View Javadoc
1   /*
2    * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3    * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4    *
5    * This code is free software; you can redistribute it and/or modify it
6    * under the terms of the GNU General Public License version 2 only, as
7    * published by the Free Software Foundation.  Oracle designates this
8    * particular file as subject to the "Classpath" exception as provided
9    * by Oracle in the LICENSE file that accompanied this code.
10   *
11   * This code is distributed in the hope that it will be useful, but WITHOUT
12   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14   * version 2 for more details (a copy is included in the LICENSE file that
15   * accompanied this code).
16   *
17   * You should have received a copy of the GNU General Public License version
18   * 2 along with this work; if not, write to the Free Software Foundation,
19   * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20   *
21   * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22   * or visit www.oracle.com if you need additional information or have any
23   * questions.
24   */
25  
26  package java.util;
27  
28  import java.io.BufferedWriter;
29  import java.io.Closeable;
30  import java.io.IOException;
31  import java.io.File;
32  import java.io.FileOutputStream;
33  import java.io.FileNotFoundException;
34  import java.io.Flushable;
35  import java.io.OutputStream;
36  import java.io.OutputStreamWriter;
37  import java.io.PrintStream;
38  import java.io.UnsupportedEncodingException;
39  import java.math.BigDecimal;
40  import java.math.BigInteger;
41  import java.math.MathContext;
42  import java.math.RoundingMode;
43  import java.nio.charset.Charset;
44  import java.nio.charset.IllegalCharsetNameException;
45  import java.nio.charset.UnsupportedCharsetException;
46  import java.text.DateFormatSymbols;
47  import java.text.DecimalFormat;
48  import java.text.DecimalFormatSymbols;
49  import java.text.NumberFormat;
50  import java.util.regex.Matcher;
51  import java.util.regex.Pattern;
52  
53  import java.time.DateTimeException;
54  import java.time.Instant;
55  import java.time.ZoneId;
56  import java.time.ZoneOffset;
57  import java.time.temporal.ChronoField;
58  import java.time.temporal.TemporalAccessor;
59  import java.time.temporal.TemporalQueries;
60  
61  import sun.misc.DoubleConsts;
62  import sun.misc.FormattedFloatingDecimal;
63  
64  /**
65   * An interpreter for printf-style format strings.  This class provides support
66   * for layout justification and alignment, common formats for numeric, string,
67   * and date/time data, and locale-specific output.  Common Java types such as
68   * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
69   * are supported.  Limited formatting customization for arbitrary user types is
70   * provided through the {@link Formattable} interface.
71   *
72   * <p> Formatters are not necessarily safe for multithreaded access.  Thread
73   * safety is optional and is the responsibility of users of methods in this
74   * class.
75   *
76   * <p> Formatted printing for the Java language is heavily inspired by C's
77   * {@code printf}.  Although the format strings are similar to C, some
78   * customizations have been made to accommodate the Java language and exploit
79   * some of its features.  Also, Java formatting is more strict than C's; for
80   * example, if a conversion is incompatible with a flag, an exception will be
81   * thrown.  In C inapplicable flags are silently ignored.  The format strings
82   * are thus intended to be recognizable to C programmers but not necessarily
83   * completely compatible with those in C.
84   *
85   * <p> Examples of expected usage:
86   *
87   * <blockquote><pre>
88   *   StringBuilder sb = new StringBuilder();
89   *   // Send all output to the Appendable object sb
90   *   Formatter formatter = new Formatter(sb, Locale.US);
91   *
92   *   // Explicit argument indices may be used to re-order output.
93   *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
94   *   // -&gt; " d  c  b  a"
95   *
96   *   // Optional locale as the first argument can be used to get
97   *   // locale-specific formatting of numbers.  The precision and width can be
98   *   // given to round and align the value.
99   *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
100  *   // -&gt; "e =    +2,7183"
101  *
102  *   // The '(' numeric flag may be used to format negative numbers with
103  *   // parentheses rather than a minus sign.  Group separators are
104  *   // automatically inserted.
105  *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
106  *                    balanceDelta);
107  *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
108  * </pre></blockquote>
109  *
110  * <p> Convenience methods for common formatting requests exist as illustrated
111  * by the following invocations:
112  *
113  * <blockquote><pre>
114  *   // Writes a formatted string to System.out.
115  *   System.out.format("Local time: %tT", Calendar.getInstance());
116  *   // -&gt; "Local time: 13:34:18"
117  *
118  *   // Writes formatted output to System.err.
119  *   System.err.printf("Unable to open file '%1$s': %2$s",
120  *                     fileName, exception.getMessage());
121  *   // -&gt; "Unable to open file 'food': No such file or directory"
122  * </pre></blockquote>
123  *
124  * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
125  * method {@link String#format(String,Object...) String.format}:
126  *
127  * <blockquote><pre>
128  *   // Format a string containing a date.
129  *   import java.util.Calendar;
130  *   import java.util.GregorianCalendar;
131  *   import static java.util.Calendar.*;
132  *
133  *   Calendar c = new GregorianCalendar(1995, MAY, 23);
134  *   String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
135  *   // -&gt; s == "Duke's Birthday: May 23, 1995"
136  * </pre></blockquote>
137  *
138  * <h3><a name="org">Organization</a></h3>
139  *
140  * <p> This specification is divided into two sections.  The first section, <a
141  * href="#summary">Summary</a>, covers the basic formatting concepts.  This
142  * section is intended for users who want to get started quickly and are
143  * familiar with formatted printing in other programming languages.  The second
144  * section, <a href="#detail">Details</a>, covers the specific implementation
145  * details.  It is intended for users who want more precise specification of
146  * formatting behavior.
147  *
148  * <h3><a name="summary">Summary</a></h3>
149  *
150  * <p> This section is intended to provide a brief overview of formatting
151  * concepts.  For precise behavioral details, refer to the <a
152  * href="#detail">Details</a> section.
153  *
154  * <h4><a name="syntax">Format String Syntax</a></h4>
155  *
156  * <p> Every method which produces formatted output requires a <i>format
157  * string</i> and an <i>argument list</i>.  The format string is a {@link
158  * String} which may contain fixed text and one or more embedded <i>format
159  * specifiers</i>.  Consider the following example:
160  *
161  * <blockquote><pre>
162  *   Calendar c = ...;
163  *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
164  * </pre></blockquote>
165  *
166  * This format string is the first argument to the {@code format} method.  It
167  * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
168  * "{@code %1$tY}" which indicate how the arguments should be processed and
169  * where they should be inserted in the text.  The remaining portions of the
170  * format string are fixed text including {@code "Dukes Birthday: "} and any
171  * other spaces or punctuation.
172  *
173  * The argument list consists of all arguments passed to the method after the
174  * format string.  In the above example, the argument list is of size one and
175  * consists of the {@link java.util.Calendar Calendar} object {@code c}.
176  *
177  * <ul>
178  *
179  * <li> The format specifiers for general, character, and numeric types have
180  * the following syntax:
181  *
182  * <blockquote><pre>
183  *   %[argument_index$][flags][width][.precision]conversion
184  * </pre></blockquote>
185  *
186  * <p> The optional <i>argument_index</i> is a decimal integer indicating the
187  * position of the argument in the argument list.  The first argument is
188  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
189  *
190  * <p> The optional <i>flags</i> is a set of characters that modify the output
191  * format.  The set of valid flags depends on the conversion.
192  *
193  * <p> The optional <i>width</i> is a positive decimal integer indicating
194  * the minimum number of characters to be written to the output.
195  *
196  * <p> The optional <i>precision</i> is a non-negative decimal integer usually
197  * used to restrict the number of characters.  The specific behavior depends on
198  * the conversion.
199  *
200  * <p> The required <i>conversion</i> is a character indicating how the
201  * argument should be formatted.  The set of valid conversions for a given
202  * argument depends on the argument's data type.
203  *
204  * <li> The format specifiers for types which are used to represents dates and
205  * times have the following syntax:
206  *
207  * <blockquote><pre>
208  *   %[argument_index$][flags][width]conversion
209  * </pre></blockquote>
210  *
211  * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
212  * defined as above.
213  *
214  * <p> The required <i>conversion</i> is a two character sequence.  The first
215  * character is {@code 't'} or {@code 'T'}.  The second character indicates
216  * the format to be used.  These characters are similar to but not completely
217  * identical to those defined by GNU {@code date} and POSIX
218  * {@code strftime(3c)}.
219  *
220  * <li> The format specifiers which do not correspond to arguments have the
221  * following syntax:
222  *
223  * <blockquote><pre>
224  *   %[flags][width]conversion
225  * </pre></blockquote>
226  *
227  * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
228  *
229  * <p> The required <i>conversion</i> is a character indicating content to be
230  * inserted in the output.
231  *
232  * </ul>
233  *
234  * <h4> Conversions </h4>
235  *
236  * <p> Conversions are divided into the following categories:
237  *
238  * <ol>
239  *
240  * <li> <b>General</b> - may be applied to any argument
241  * type
242  *
243  * <li> <b>Character</b> - may be applied to basic types which represent
244  * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
245  * Byte}, {@code short}, and {@link Short}. This conversion may also be
246  * applied to the types {@code int} and {@link Integer} when {@link
247  * Character#isValidCodePoint} returns {@code true}
248  *
249  * <li> <b>Numeric</b>
250  *
251  * <ol>
252  *
253  * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
254  * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
255  * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
256  * BigInteger} (but not {@code char} or {@link Character})
257  *
258  * <li><b>Floating Point</b> - may be applied to Java floating-point types:
259  * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
260  * java.math.BigDecimal BigDecimal}
261  *
262  * </ol>
263  *
264  * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
265  * encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
266  * {@link Date} and {@link TemporalAccessor TemporalAccessor}
267  *
268  * <li> <b>Percent</b> - produces a literal {@code '%'}
269  * (<tt>'&#92;u0025'</tt>)
270  *
271  * <li> <b>Line Separator</b> - produces the platform-specific line separator
272  *
273  * </ol>
274  *
275  * <p> The following table summarizes the supported conversions.  Conversions
276  * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
277  * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
278  * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
279  * lower-case conversion characters except that the result is converted to
280  * upper case according to the rules of the prevailing {@link java.util.Locale
281  * Locale}.  The result is equivalent to the following invocation of {@link
282  * String#toUpperCase()}
283  *
284  * <pre>
285  *    out.toUpperCase() </pre>
286  *
287  * <table cellpadding=5 summary="genConv">
288  *
289  * <tr><th valign="bottom"> Conversion
290  *     <th valign="bottom"> Argument Category
291  *     <th valign="bottom"> Description
292  *
293  * <tr><td valign="top"> {@code 'b'}, {@code 'B'}
294  *     <td valign="top"> general
295  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
296  *     "{@code false}".  If <i>arg</i> is a {@code boolean} or {@link
297  *     Boolean}, then the result is the string returned by {@link
298  *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
299  *     "true".
300  *
301  * <tr><td valign="top"> {@code 'h'}, {@code 'H'}
302  *     <td valign="top"> general
303  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
304  *     "{@code null}".  Otherwise, the result is obtained by invoking
305  *     {@code Integer.toHexString(arg.hashCode())}.
306  *
307  * <tr><td valign="top"> {@code 's'}, {@code 'S'}
308  *     <td valign="top"> general
309  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
310  *     "{@code null}".  If <i>arg</i> implements {@link Formattable}, then
311  *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
312  *     result is obtained by invoking {@code arg.toString()}.
313  *
314  * <tr><td valign="top">{@code 'c'}, {@code 'C'}
315  *     <td valign="top"> character
316  *     <td> The result is a Unicode character
317  *
318  * <tr><td valign="top">{@code 'd'}
319  *     <td valign="top"> integral
320  *     <td> The result is formatted as a decimal integer
321  *
322  * <tr><td valign="top">{@code 'o'}
323  *     <td valign="top"> integral
324  *     <td> The result is formatted as an octal integer
325  *
326  * <tr><td valign="top">{@code 'x'}, {@code 'X'}
327  *     <td valign="top"> integral
328  *     <td> The result is formatted as a hexadecimal integer
329  *
330  * <tr><td valign="top">{@code 'e'}, {@code 'E'}
331  *     <td valign="top"> floating point
332  *     <td> The result is formatted as a decimal number in computerized
333  *     scientific notation
334  *
335  * <tr><td valign="top">{@code 'f'}
336  *     <td valign="top"> floating point
337  *     <td> The result is formatted as a decimal number
338  *
339  * <tr><td valign="top">{@code 'g'}, {@code 'G'}
340  *     <td valign="top"> floating point
341  *     <td> The result is formatted using computerized scientific notation or
342  *     decimal format, depending on the precision and the value after rounding.
343  *
344  * <tr><td valign="top">{@code 'a'}, {@code 'A'}
345  *     <td valign="top"> floating point
346  *     <td> The result is formatted as a hexadecimal floating-point number with
347  *     a significand and an exponent. This conversion is <b>not</b> supported
348  *     for the {@code BigDecimal} type despite the latter's being in the
349  *     <i>floating point</i> argument category.
350  *
351  * <tr><td valign="top">{@code 't'}, {@code 'T'}
352  *     <td valign="top"> date/time
353  *     <td> Prefix for date and time conversion characters.  See <a
354  *     href="#dt">Date/Time Conversions</a>.
355  *
356  * <tr><td valign="top">{@code '%'}
357  *     <td valign="top"> percent
358  *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
359  *
360  * <tr><td valign="top">{@code 'n'}
361  *     <td valign="top"> line separator
362  *     <td> The result is the platform-specific line separator
363  *
364  * </table>
365  *
366  * <p> Any characters not explicitly defined as conversions are illegal and are
367  * reserved for future extensions.
368  *
369  * <h4><a name="dt">Date/Time Conversions</a></h4>
370  *
371  * <p> The following date and time conversion suffix characters are defined for
372  * the {@code 't'} and {@code 'T'} conversions.  The types are similar to but
373  * not completely identical to those defined by GNU {@code date} and POSIX
374  * {@code strftime(3c)}.  Additional conversion types are provided to access
375  * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
376  * second).
377  *
378  * <p> The following conversion characters are used for formatting times:
379  *
380  * <table cellpadding=5 summary="time">
381  *
382  * <tr><td valign="top"> {@code 'H'}
383  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
384  *     a leading zero as necessary i.e. {@code 00 - 23}.
385  *
386  * <tr><td valign="top">{@code 'I'}
387  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
388  *     zero as necessary, i.e.  {@code 01 - 12}.
389  *
390  * <tr><td valign="top">{@code 'k'}
391  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
392  *
393  * <tr><td valign="top">{@code 'l'}
394  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
395  *
396  * <tr><td valign="top">{@code 'M'}
397  *     <td> Minute within the hour formatted as two digits with a leading zero
398  *     as necessary, i.e.  {@code 00 - 59}.
399  *
400  * <tr><td valign="top">{@code 'S'}
401  *     <td> Seconds within the minute, formatted as two digits with a leading
402  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
403  *     value required to support leap seconds).
404  *
405  * <tr><td valign="top">{@code 'L'}
406  *     <td> Millisecond within the second formatted as three digits with
407  *     leading zeros as necessary, i.e. {@code 000 - 999}.
408  *
409  * <tr><td valign="top">{@code 'N'}
410  *     <td> Nanosecond within the second, formatted as nine digits with leading
411  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.
412  *
413  * <tr><td valign="top">{@code 'p'}
414  *     <td> Locale-specific {@linkplain
415  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
416  *     in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
417  *     prefix {@code 'T'} forces this output to upper case.
418  *
419  * <tr><td valign="top">{@code 'z'}
420  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
421  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
422  *     value will be adjusted as necessary for Daylight Saving Time.  For
423  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
424  *     the {@linkplain TimeZone#getDefault() default time zone} for this
425  *     instance of the Java virtual machine.
426  *
427  * <tr><td valign="top">{@code 'Z'}
428  *     <td> A string representing the abbreviation for the time zone.  This
429  *     value will be adjusted as necessary for Daylight Saving Time.  For
430  *     {@code long}, {@link Long}, and {@link Date} the  time zone used is
431  *     the {@linkplain TimeZone#getDefault() default time zone} for this
432  *     instance of the Java virtual machine.  The Formatter's locale will
433  *     supersede the locale of the argument (if any).
434  *
435  * <tr><td valign="top">{@code 's'}
436  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
437  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
438  *     {@code Long.MAX_VALUE/1000}.
439  *
440  * <tr><td valign="top">{@code 'Q'}
441  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
442  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
443  *     {@code Long.MAX_VALUE}.
444  *
445  * </table>
446  *
447  * <p> The following conversion characters are used for formatting dates:
448  *
449  * <table cellpadding=5 summary="date">
450  *
451  * <tr><td valign="top">{@code 'B'}
452  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
453  *     full month name}, e.g. {@code "January"}, {@code "February"}.
454  *
455  * <tr><td valign="top">{@code 'b'}
456  *     <td> Locale-specific {@linkplain
457  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
458  *     e.g. {@code "Jan"}, {@code "Feb"}.
459  *
460  * <tr><td valign="top">{@code 'h'}
461  *     <td> Same as {@code 'b'}.
462  *
463  * <tr><td valign="top">{@code 'A'}
464  *     <td> Locale-specific full name of the {@linkplain
465  *     java.text.DateFormatSymbols#getWeekdays day of the week},
466  *     e.g. {@code "Sunday"}, {@code "Monday"}
467  *
468  * <tr><td valign="top">{@code 'a'}
469  *     <td> Locale-specific short name of the {@linkplain
470  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
471  *     e.g. {@code "Sun"}, {@code "Mon"}
472  *
473  * <tr><td valign="top">{@code 'C'}
474  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
475  *     with leading zero as necessary, i.e. {@code 00 - 99}
476  *
477  * <tr><td valign="top">{@code 'Y'}
478  *     <td> Year, formatted as at least four digits with leading zeros as
479  *     necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
480  *     calendar.
481  *
482  * <tr><td valign="top">{@code 'y'}
483  *     <td> Last two digits of the year, formatted with leading zeros as
484  *     necessary, i.e. {@code 00 - 99}.
485  *
486  * <tr><td valign="top">{@code 'j'}
487  *     <td> Day of year, formatted as three digits with leading zeros as
488  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
489  *
490  * <tr><td valign="top">{@code 'm'}
491  *     <td> Month, formatted as two digits with leading zeros as necessary,
492  *     i.e. {@code 01 - 13}.
493  *
494  * <tr><td valign="top">{@code 'd'}
495  *     <td> Day of month, formatted as two digits with leading zeros as
496  *     necessary, i.e. {@code 01 - 31}
497  *
498  * <tr><td valign="top">{@code 'e'}
499  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
500  *
501  * </table>
502  *
503  * <p> The following conversion characters are used for formatting common
504  * date/time compositions.
505  *
506  * <table cellpadding=5 summary="composites">
507  *
508  * <tr><td valign="top">{@code 'R'}
509  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
510  *
511  * <tr><td valign="top">{@code 'T'}
512  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
513  *
514  * <tr><td valign="top">{@code 'r'}
515  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
516  *     The location of the morning or afternoon marker ({@code '%Tp'}) may be
517  *     locale-dependent.
518  *
519  * <tr><td valign="top">{@code 'D'}
520  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
521  *
522  * <tr><td valign="top">{@code 'F'}
523  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
524  *     complete date formatted as {@code "%tY-%tm-%td"}.
525  *
526  * <tr><td valign="top">{@code 'c'}
527  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
528  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
529  *
530  * </table>
531  *
532  * <p> Any characters not explicitly defined as date/time conversion suffixes
533  * are illegal and are reserved for future extensions.
534  *
535  * <h4> Flags </h4>
536  *
537  * <p> The following table summarizes the supported flags.  <i>y</i> means the
538  * flag is supported for the indicated argument types.
539  *
540  * <table cellpadding=5 summary="genConv">
541  *
542  * <tr><th valign="bottom"> Flag <th valign="bottom"> General
543  *     <th valign="bottom"> Character <th valign="bottom"> Integral
544  *     <th valign="bottom"> Floating Point
545  *     <th valign="bottom"> Date/Time
546  *     <th valign="bottom"> Description
547  *
548  * <tr><td> '-' <td align="center" valign="top"> y
549  *     <td align="center" valign="top"> y
550  *     <td align="center" valign="top"> y
551  *     <td align="center" valign="top"> y
552  *     <td align="center" valign="top"> y
553  *     <td> The result will be left-justified.
554  *
555  * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
556  *     <td align="center" valign="top"> -
557  *     <td align="center" valign="top"> y<sup>3</sup>
558  *     <td align="center" valign="top"> y
559  *     <td align="center" valign="top"> -
560  *     <td> The result should use a conversion-dependent alternate form
561  *
562  * <tr><td> '+' <td align="center" valign="top"> -
563  *     <td align="center" valign="top"> -
564  *     <td align="center" valign="top"> y<sup>4</sup>
565  *     <td align="center" valign="top"> y
566  *     <td align="center" valign="top"> -
567  *     <td> The result will always include a sign
568  *
569  * <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> -
570  *     <td align="center" valign="top"> -
571  *     <td align="center" valign="top"> y<sup>4</sup>
572  *     <td align="center" valign="top"> y
573  *     <td align="center" valign="top"> -
574  *     <td> The result will include a leading space for positive values
575  *
576  * <tr><td> '0' <td align="center" valign="top"> -
577  *     <td align="center" valign="top"> -
578  *     <td align="center" valign="top"> y
579  *     <td align="center" valign="top"> y
580  *     <td align="center" valign="top"> -
581  *     <td> The result will be zero-padded
582  *
583  * <tr><td> ',' <td align="center" valign="top"> -
584  *     <td align="center" valign="top"> -
585  *     <td align="center" valign="top"> y<sup>2</sup>
586  *     <td align="center" valign="top"> y<sup>5</sup>
587  *     <td align="center" valign="top"> -
588  *     <td> The result will include locale-specific {@linkplain
589  *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
590  *
591  * <tr><td> '(' <td align="center" valign="top"> -
592  *     <td align="center" valign="top"> -
593  *     <td align="center" valign="top"> y<sup>4</sup>
594  *     <td align="center" valign="top"> y<sup>5</sup>
595  *     <td align="center"> -
596  *     <td> The result will enclose negative numbers in parentheses
597  *
598  * </table>
599  *
600  * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
601  *
602  * <p> <sup>2</sup> For {@code 'd'} conversion only.
603  *
604  * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
605  * conversions only.
606  *
607  * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
608  * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
609  * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
610  * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
611  *
612  * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
613  * {@code 'g'}, and {@code 'G'} conversions only.
614  *
615  * <p> Any characters not explicitly defined as flags are illegal and are
616  * reserved for future extensions.
617  *
618  * <h4> Width </h4>
619  *
620  * <p> The width is the minimum number of characters to be written to the
621  * output.  For the line separator conversion, width is not applicable; if it
622  * is provided, an exception will be thrown.
623  *
624  * <h4> Precision </h4>
625  *
626  * <p> For general argument types, the precision is the maximum number of
627  * characters to be written to the output.
628  *
629  * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
630  * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
631  * radix point.  If the conversion is {@code 'g'} or {@code 'G'}, then the
632  * precision is the total number of digits in the resulting magnitude after
633  * rounding.
634  *
635  * <p> For character, integral, and date/time argument types and the percent
636  * and line separator conversions, the precision is not applicable; if a
637  * precision is provided, an exception will be thrown.
638  *
639  * <h4> Argument Index </h4>
640  *
641  * <p> The argument index is a decimal integer indicating the position of the
642  * argument in the argument list.  The first argument is referenced by
643  * "{@code 1$}", the second by "{@code 2$}", etc.
644  *
645  * <p> Another way to reference arguments by position is to use the
646  * {@code '<'} (<tt>'&#92;u003c'</tt>) flag, which causes the argument for
647  * the previous format specifier to be re-used.  For example, the following two
648  * statements would produce identical strings:
649  *
650  * <blockquote><pre>
651  *   Calendar c = ...;
652  *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
653  *
654  *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
655  * </pre></blockquote>
656  *
657  * <hr>
658  * <h3><a name="detail">Details</a></h3>
659  *
660  * <p> This section is intended to provide behavioral details for formatting,
661  * including conditions and exceptions, supported data types, localization, and
662  * interactions between flags, conversions, and data types.  For an overview of
663  * formatting concepts, refer to the <a href="#summary">Summary</a>
664  *
665  * <p> Any characters not explicitly defined as conversions, date/time
666  * conversion suffixes, or flags are illegal and are reserved for
667  * future extensions.  Use of such a character in a format string will
668  * cause an {@link UnknownFormatConversionException} or {@link
669  * UnknownFormatFlagsException} to be thrown.
670  *
671  * <p> If the format specifier contains a width or precision with an invalid
672  * value or which is otherwise unsupported, then a {@link
673  * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
674  * respectively will be thrown.
675  *
676  * <p> If a format specifier contains a conversion character that is not
677  * applicable to the corresponding argument, then an {@link
678  * IllegalFormatConversionException} will be thrown.
679  *
680  * <p> All specified exceptions may be thrown by any of the {@code format}
681  * methods of {@code Formatter} as well as by any {@code format} convenience
682  * methods such as {@link String#format(String,Object...) String.format} and
683  * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
684  *
685  * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
686  * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
687  * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
688  * corresponding lower-case conversion characters except that the result is
689  * converted to upper case according to the rules of the prevailing {@link
690  * java.util.Locale Locale}.  The result is equivalent to the following
691  * invocation of {@link String#toUpperCase()}
692  *
693  * <pre>
694  *    out.toUpperCase() </pre>
695  *
696  * <h4><a name="dgen">General</a></h4>
697  *
698  * <p> The following general conversions may be applied to any argument type:
699  *
700  * <table cellpadding=5 summary="dgConv">
701  *
702  * <tr><td valign="top"> {@code 'b'}
703  *     <td valign="top"> <tt>'&#92;u0062'</tt>
704  *     <td> Produces either "{@code true}" or "{@code false}" as returned by
705  *     {@link Boolean#toString(boolean)}.
706  *
707  *     <p> If the argument is {@code null}, then the result is
708  *     "{@code false}".  If the argument is a {@code boolean} or {@link
709  *     Boolean}, then the result is the string returned by {@link
710  *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
711  *     "{@code true}".
712  *
713  *     <p> If the {@code '#'} flag is given, then a {@link
714  *     FormatFlagsConversionMismatchException} will be thrown.
715  *
716  * <tr><td valign="top"> {@code 'B'}
717  *     <td valign="top"> <tt>'&#92;u0042'</tt>
718  *     <td> The upper-case variant of {@code 'b'}.
719  *
720  * <tr><td valign="top"> {@code 'h'}
721  *     <td valign="top"> <tt>'&#92;u0068'</tt>
722  *     <td> Produces a string representing the hash code value of the object.
723  *
724  *     <p> If the argument, <i>arg</i> is {@code null}, then the
725  *     result is "{@code null}".  Otherwise, the result is obtained
726  *     by invoking {@code Integer.toHexString(arg.hashCode())}.
727  *
728  *     <p> If the {@code '#'} flag is given, then a {@link
729  *     FormatFlagsConversionMismatchException} will be thrown.
730  *
731  * <tr><td valign="top"> {@code 'H'}
732  *     <td valign="top"> <tt>'&#92;u0048'</tt>
733  *     <td> The upper-case variant of {@code 'h'}.
734  *
735  * <tr><td valign="top"> {@code 's'}
736  *     <td valign="top"> <tt>'&#92;u0073'</tt>
737  *     <td> Produces a string.
738  *
739  *     <p> If the argument is {@code null}, then the result is
740  *     "{@code null}".  If the argument implements {@link Formattable}, then
741  *     its {@link Formattable#formatTo formatTo} method is invoked.
742  *     Otherwise, the result is obtained by invoking the argument's
743  *     {@code toString()} method.
744  *
745  *     <p> If the {@code '#'} flag is given and the argument is not a {@link
746  *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
747  *     will be thrown.
748  *
749  * <tr><td valign="top"> {@code 'S'}
750  *     <td valign="top"> <tt>'&#92;u0053'</tt>
751  *     <td> The upper-case variant of {@code 's'}.
752  *
753  * </table>
754  *
755  * <p> The following <a name="dFlags">flags</a> apply to general conversions:
756  *
757  * <table cellpadding=5 summary="dFlags">
758  *
759  * <tr><td valign="top"> {@code '-'}
760  *     <td valign="top"> <tt>'&#92;u002d'</tt>
761  *     <td> Left justifies the output.  Spaces (<tt>'&#92;u0020'</tt>) will be
762  *     added at the end of the converted value as required to fill the minimum
763  *     width of the field.  If the width is not provided, then a {@link
764  *     MissingFormatWidthException} will be thrown.  If this flag is not given
765  *     then the output will be right-justified.
766  *
767  * <tr><td valign="top"> {@code '#'}
768  *     <td valign="top"> <tt>'&#92;u0023'</tt>
769  *     <td> Requires the output use an alternate form.  The definition of the
770  *     form is specified by the conversion.
771  *
772  * </table>
773  *
774  * <p> The <a name="genWidth">width</a> is the minimum number of characters to
775  * be written to the
776  * output.  If the length of the converted value is less than the width then
777  * the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>'&#92;u0020'</tt>)
778  * until the total number of characters equals the width.  The padding is on
779  * the left by default.  If the {@code '-'} flag is given, then the padding
780  * will be on the right.  If the width is not specified then there is no
781  * minimum.
782  *
783  * <p> The precision is the maximum number of characters to be written to the
784  * output.  The precision is applied before the width, thus the output will be
785  * truncated to {@code precision} characters even if the width is greater than
786  * the precision.  If the precision is not specified then there is no explicit
787  * limit on the number of characters.
788  *
789  * <h4><a name="dchar">Character</a></h4>
790  *
791  * This conversion may be applied to {@code char} and {@link Character}.  It
792  * may also be applied to the types {@code byte}, {@link Byte},
793  * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
794  * {@link Character#isValidCodePoint} returns {@code true}.  If it returns
795  * {@code false} then an {@link IllegalFormatCodePointException} will be
796  * thrown.
797  *
798  * <table cellpadding=5 summary="charConv">
799  *
800  * <tr><td valign="top"> {@code 'c'}
801  *     <td valign="top"> <tt>'&#92;u0063'</tt>
802  *     <td> Formats the argument as a Unicode character as described in <a
803  *     href="../lang/Character.html#unicode">Unicode Character
804  *     Representation</a>.  This may be more than one 16-bit {@code char} in
805  *     the case where the argument represents a supplementary character.
806  *
807  *     <p> If the {@code '#'} flag is given, then a {@link
808  *     FormatFlagsConversionMismatchException} will be thrown.
809  *
810  * <tr><td valign="top"> {@code 'C'}
811  *     <td valign="top"> <tt>'&#92;u0043'</tt>
812  *     <td> The upper-case variant of {@code 'c'}.
813  *
814  * </table>
815  *
816  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
817  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
818  * FormatFlagsConversionMismatchException} will be thrown.
819  *
820  * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
821  *
822  * <p> The precision is not applicable.  If the precision is specified then an
823  * {@link IllegalFormatPrecisionException} will be thrown.
824  *
825  * <h4><a name="dnum">Numeric</a></h4>
826  *
827  * <p> Numeric conversions are divided into the following categories:
828  *
829  * <ol>
830  *
831  * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
832  *
833  * <li> <a href="#dnbint"><b>BigInteger</b></a>
834  *
835  * <li> <a href="#dndec"><b>Float and Double</b></a>
836  *
837  * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
838  *
839  * </ol>
840  *
841  * <p> Numeric types will be formatted according to the following algorithm:
842  *
843  * <p><b><a name="L10nAlgorithm"> Number Localization Algorithm</a></b>
844  *
845  * <p> After digits are obtained for the integer part, fractional part, and
846  * exponent (as appropriate for the data type), the following transformation
847  * is applied:
848  *
849  * <ol>
850  *
851  * <li> Each digit character <i>d</i> in the string is replaced by a
852  * locale-specific digit computed relative to the current locale's
853  * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
854  * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
855  * <i>&nbsp;+&nbsp;z</i>.
856  *
857  * <li> If a decimal separator is present, a locale-specific {@linkplain
858  * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
859  * substituted.
860  *
861  * <li> If the {@code ','} (<tt>'&#92;u002c'</tt>)
862  * <a name="L10nGroup">flag</a> is given, then the locale-specific {@linkplain
863  * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
864  * inserted by scanning the integer part of the string from least significant
865  * to most significant digits and inserting a separator at intervals defined by
866  * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
867  * size}.
868  *
869  * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
870  * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
871  * after the sign character, if any, and before the first non-zero digit, until
872  * the length of the string is equal to the requested field width.
873  *
874  * <li> If the value is negative and the {@code '('} flag is given, then a
875  * {@code '('} (<tt>'&#92;u0028'</tt>) is prepended and a {@code ')'}
876  * (<tt>'&#92;u0029'</tt>) is appended.
877  *
878  * <li> If the value is negative (or floating-point negative zero) and
879  * {@code '('} flag is not given, then a {@code '-'} (<tt>'&#92;u002d'</tt>)
880  * is prepended.
881  *
882  * <li> If the {@code '+'} flag is given and the value is positive or zero (or
883  * floating-point positive zero), then a {@code '+'} (<tt>'&#92;u002b'</tt>)
884  * will be prepended.
885  *
886  * </ol>
887  *
888  * <p> If the value is NaN or positive infinity the literal strings "NaN" or
889  * "Infinity" respectively, will be output.  If the value is negative infinity,
890  * then the output will be "(Infinity)" if the {@code '('} flag is given
891  * otherwise the output will be "-Infinity".  These values are not localized.
892  *
893  * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
894  *
895  * <p> The following conversions may be applied to {@code byte}, {@link Byte},
896  * {@code short}, {@link Short}, {@code int} and {@link Integer},
897  * {@code long}, and {@link Long}.
898  *
899  * <table cellpadding=5 summary="IntConv">
900  *
901  * <tr><td valign="top"> {@code 'd'}
902  *     <td valign="top"> <tt>'&#92;u0064'</tt>
903  *     <td> Formats the argument as a decimal integer. The <a
904  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
905  *
906  *     <p> If the {@code '0'} flag is given and the value is negative, then
907  *     the zero padding will occur after the sign.
908  *
909  *     <p> If the {@code '#'} flag is given then a {@link
910  *     FormatFlagsConversionMismatchException} will be thrown.
911  *
912  * <tr><td valign="top"> {@code 'o'}
913  *     <td valign="top"> <tt>'&#92;u006f'</tt>
914  *     <td> Formats the argument as an integer in base eight.  No localization
915  *     is applied.
916  *
917  *     <p> If <i>x</i> is negative then the result will be an unsigned value
918  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
919  *     number of bits in the type as returned by the static {@code SIZE} field
920  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
921  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
922  *     classes as appropriate.
923  *
924  *     <p> If the {@code '#'} flag is given then the output will always begin
925  *     with the radix indicator {@code '0'}.
926  *
927  *     <p> If the {@code '0'} flag is given then the output will be padded
928  *     with leading zeros to the field width following any indication of sign.
929  *
930  *     <p> If {@code '('}, {@code '+'}, '&nbsp;&nbsp;', or {@code ','} flags
931  *     are given then a {@link FormatFlagsConversionMismatchException} will be
932  *     thrown.
933  *
934  * <tr><td valign="top"> {@code 'x'}
935  *     <td valign="top"> <tt>'&#92;u0078'</tt>
936  *     <td> Formats the argument as an integer in base sixteen. No
937  *     localization is applied.
938  *
939  *     <p> If <i>x</i> is negative then the result will be an unsigned value
940  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
941  *     number of bits in the type as returned by the static {@code SIZE} field
942  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
943  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
944  *     classes as appropriate.
945  *
946  *     <p> If the {@code '#'} flag is given then the output will always begin
947  *     with the radix indicator {@code "0x"}.
948  *
949  *     <p> If the {@code '0'} flag is given then the output will be padded to
950  *     the field width with leading zeros after the radix indicator or sign (if
951  *     present).
952  *
953  *     <p> If {@code '('}, <tt>'&nbsp;&nbsp;'</tt>, {@code '+'}, or
954  *     {@code ','} flags are given then a {@link
955  *     FormatFlagsConversionMismatchException} will be thrown.
956  *
957  * <tr><td valign="top"> {@code 'X'}
958  *     <td valign="top"> <tt>'&#92;u0058'</tt>
959  *     <td> The upper-case variant of {@code 'x'}.  The entire string
960  *     representing the number will be converted to {@linkplain
961  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
962  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
963  *     (<tt>'&#92;u0061'</tt> -  <tt>'&#92;u0066'</tt>).
964  *
965  * </table>
966  *
967  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
968  * both the {@code '#'} and the {@code '0'} flags are given, then result will
969  * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
970  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
971  * and the value.
972  *
973  * <p> If the {@code '-'} flag is not given, then the space padding will occur
974  * before the sign.
975  *
976  * <p> The following <a name="intFlags">flags</a> apply to numeric integral
977  * conversions:
978  *
979  * <table cellpadding=5 summary="intFlags">
980  *
981  * <tr><td valign="top"> {@code '+'}
982  *     <td valign="top"> <tt>'&#92;u002b'</tt>
983  *     <td> Requires the output to include a positive sign for all positive
984  *     numbers.  If this flag is not given then only negative values will
985  *     include a sign.
986  *
987  *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
988  *     then an {@link IllegalFormatFlagsException} will be thrown.
989  *
990  * <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt>
991  *     <td valign="top"> <tt>'&#92;u0020'</tt>
992  *     <td> Requires the output to include a single extra space
993  *     (<tt>'&#92;u0020'</tt>) for non-negative values.
994  *
995  *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
996  *     then an {@link IllegalFormatFlagsException} will be thrown.
997  *
998  * <tr><td valign="top"> {@code '0'}
999  *     <td valign="top"> <tt>'&#92;u0030'</tt>
1000  *     <td> Requires the output to be padded with leading {@linkplain
1001  *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
1002  *     width following any sign or radix indicator except when converting NaN
1003  *     or infinity.  If the width is not provided, then a {@link
1004  *     MissingFormatWidthException} will be thrown.
1005  *
1006  *     <p> If both the {@code '-'} and {@code '0'} flags are given then an
1007  *     {@link IllegalFormatFlagsException} will be thrown.
1008  *
1009  * <tr><td valign="top"> {@code ','}
1010  *     <td valign="top"> <tt>'&#92;u002c'</tt>
1011  *     <td> Requires the output to include the locale-specific {@linkplain
1012  *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1013  *     described in the <a href="#L10nGroup">"group" section</a> of the
1014  *     localization algorithm.
1015  *
1016  * <tr><td valign="top"> {@code '('}
1017  *     <td valign="top"> <tt>'&#92;u0028'</tt>
1018  *     <td> Requires the output to prepend a {@code '('}
1019  *     (<tt>'&#92;u0028'</tt>) and append a {@code ')'}
1020  *     (<tt>'&#92;u0029'</tt>) to negative values.
1021  *
1022  * </table>
1023  *
1024  * <p> If no <a name="intdFlags">flags</a> are given the default formatting is
1025  * as follows:
1026  *
1027  * <ul>
1028  *
1029  * <li> The output is right-justified within the {@code width}
1030  *
1031  * <li> Negative numbers begin with a {@code '-'} (<tt>'&#92;u002d'</tt>)
1032  *
1033  * <li> Positive numbers and zero do not include a sign or extra leading
1034  * space
1035  *
1036  * <li> No grouping separators are included
1037  *
1038  * </ul>
1039  *
1040  * <p> The <a name="intWidth">width</a> is the minimum number of characters to
1041  * be written to the output.  This includes any signs, digits, grouping
1042  * separators, radix indicator, and parentheses.  If the length of the
1043  * converted value is less than the width then the output will be padded by
1044  * spaces (<tt>'&#92;u0020'</tt>) until the total number of characters equals
1045  * width.  The padding is on the left by default.  If {@code '-'} flag is
1046  * given then the padding will be on the right.  If width is not specified then
1047  * there is no minimum.
1048  *
1049  * <p> The precision is not applicable.  If precision is specified then an
1050  * {@link IllegalFormatPrecisionException} will be thrown.
1051  *
1052  * <p><a name="dnbint"><b> BigInteger </b></a>
1053  *
1054  * <p> The following conversions may be applied to {@link
1055  * java.math.BigInteger}.
1056  *
1057  * <table cellpadding=5 summary="BIntConv">
1058  *
1059  * <tr><td valign="top"> {@code 'd'}
1060  *     <td valign="top"> <tt>'&#92;u0064'</tt>
1061  *     <td> Requires the output to be formatted as a decimal integer. The <a
1062  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1063  *
1064  *     <p> If the {@code '#'} flag is given {@link
1065  *     FormatFlagsConversionMismatchException} will be thrown.
1066  *
1067  * <tr><td valign="top"> {@code 'o'}
1068  *     <td valign="top"> <tt>'&#92;u006f'</tt>
1069  *     <td> Requires the output to be formatted as an integer in base eight.
1070  *     No localization is applied.
1071  *
1072  *     <p> If <i>x</i> is negative then the result will be a signed value
1073  *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1074  *     allowed for this type because unlike the primitive types it is not
1075  *     possible to create an unsigned equivalent without assuming an explicit
1076  *     data-type size.
1077  *
1078  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1079  *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1080  *
1081  *     <p> If the {@code '#'} flag is given then the output will always begin
1082  *     with {@code '0'} prefix.
1083  *
1084  *     <p> If the {@code '0'} flag is given then the output will be padded
1085  *     with leading zeros to the field width following any indication of sign.
1086  *
1087  *     <p> If the {@code ','} flag is given then a {@link
1088  *     FormatFlagsConversionMismatchException} will be thrown.
1089  *
1090  * <tr><td valign="top"> {@code 'x'}
1091  *     <td valign="top"> <tt>'&#92;u0078'</tt>
1092  *     <td> Requires the output to be formatted as an integer in base
1093  *     sixteen.  No localization is applied.
1094  *
1095  *     <p> If <i>x</i> is negative then the result will be a signed value
1096  *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1097  *     allowed for this type because unlike the primitive types it is not
1098  *     possible to create an unsigned equivalent without assuming an explicit
1099  *     data-type size.
1100  *
1101  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1102  *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1103  *
1104  *     <p> If the {@code '#'} flag is given then the output will always begin
1105  *     with the radix indicator {@code "0x"}.
1106  *
1107  *     <p> If the {@code '0'} flag is given then the output will be padded to
1108  *     the field width with leading zeros after the radix indicator or sign (if
1109  *     present).
1110  *
1111  *     <p> If the {@code ','} flag is given then a {@link
1112  *     FormatFlagsConversionMismatchException} will be thrown.
1113  *
1114  * <tr><td valign="top"> {@code 'X'}
1115  *     <td valign="top"> <tt>'&#92;u0058'</tt>
1116  *     <td> The upper-case variant of {@code 'x'}.  The entire string
1117  *     representing the number will be converted to {@linkplain
1118  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
1119  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
1120  *     (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1121  *
1122  * </table>
1123  *
1124  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1125  * both the {@code '#'} and the {@code '0'} flags are given, then result will
1126  * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1127  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1128  * and the value.
1129  *
1130  * <p> If the {@code '0'} flag is given and the value is negative, then the
1131  * zero padding will occur after the sign.
1132  *
1133  * <p> If the {@code '-'} flag is not given, then the space padding will occur
1134  * before the sign.
1135  *
1136  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1137  * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
1138  * given is the same as for Byte, Short, Integer, and Long.
1139  *
1140  * <p> The specification of <a href="#intWidth">width</a> is the same as
1141  * defined for Byte, Short, Integer, and Long.
1142  *
1143  * <p> The precision is not applicable.  If precision is specified then an
1144  * {@link IllegalFormatPrecisionException} will be thrown.
1145  *
1146  * <p><a name="dndec"><b> Float and Double</b></a>
1147  *
1148  * <p> The following conversions may be applied to {@code float}, {@link
1149  * Float}, {@code double} and {@link Double}.
1150  *
1151  * <table cellpadding=5 summary="floatConv">
1152  *
1153  * <tr><td valign="top"> {@code 'e'}
1154  *     <td valign="top"> <tt>'&#92;u0065'</tt>
1155  *     <td> Requires the output to be formatted using <a
1156  *     name="scientific">computerized scientific notation</a>.  The <a
1157  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1158  *
1159  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1160  *
1161  *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1162  *     "Infinity", respectively, will be output.  These values are not
1163  *     localized.
1164  *
1165  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1166  *     will be {@code "+00"}.
1167  *
1168  *     <p> Otherwise, the result is a string that represents the sign and
1169  *     magnitude (absolute value) of the argument.  The formatting of the sign
1170  *     is described in the <a href="#L10nAlgorithm">localization
1171  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1172  *     value.
1173  *
1174  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1175  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1176  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1177  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1178  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1179  *     decimal separator followed by decimal digits representing the fractional
1180  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1181  *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1182  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1183  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1184  *     least two digits.
1185  *
1186  *     <p> The number of digits in the result for the fractional part of
1187  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1188  *     specified then the default value is {@code 6}. If the precision is less
1189  *     than the number of digits which would appear after the decimal point in
1190  *     the string returned by {@link Float#toString(float)} or {@link
1191  *     Double#toString(double)} respectively, then the value will be rounded
1192  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1193  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1194  *     For a canonical representation of the value, use {@link
1195  *     Float#toString(float)} or {@link Double#toString(double)} as
1196  *     appropriate.
1197  *
1198  *     <p>If the {@code ','} flag is given, then an {@link
1199  *     FormatFlagsConversionMismatchException} will be thrown.
1200  *
1201  * <tr><td valign="top"> {@code 'E'}
1202  *     <td valign="top"> <tt>'&#92;u0045'</tt>
1203  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1204  *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1205  *
1206  * <tr><td valign="top"> {@code 'g'}
1207  *     <td valign="top"> <tt>'&#92;u0067'</tt>
1208  *     <td> Requires the output to be formatted in general scientific notation
1209  *     as described below. The <a href="#L10nAlgorithm">localization
1210  *     algorithm</a> is applied.
1211  *
1212  *     <p> After rounding for the precision, the formatting of the resulting
1213  *     magnitude <i>m</i> depends on its value.
1214  *
1215  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1216  *     than 10<sup>precision</sup> then it is represented in <i><a
1217  *     href="#decimal">decimal format</a></i>.
1218  *
1219  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1220  *     10<sup>precision</sup>, then it is represented in <i><a
1221  *     href="#scientific">computerized scientific notation</a></i>.
1222  *
1223  *     <p> The total number of significant digits in <i>m</i> is equal to the
1224  *     precision.  If the precision is not specified, then the default value is
1225  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1226  *     {@code 1}.
1227  *
1228  *     <p> If the {@code '#'} flag is given then an {@link
1229  *     FormatFlagsConversionMismatchException} will be thrown.
1230  *
1231  * <tr><td valign="top"> {@code 'G'}
1232  *     <td valign="top"> <tt>'&#92;u0047'</tt>
1233  *     <td> The upper-case variant of {@code 'g'}.
1234  *
1235  * <tr><td valign="top"> {@code 'f'}
1236  *     <td valign="top"> <tt>'&#92;u0066'</tt>
1237  *     <td> Requires the output to be formatted using <a name="decimal">decimal
1238  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1239  *     applied.
1240  *
1241  *     <p> The result is a string that represents the sign and magnitude
1242  *     (absolute value) of the argument.  The formatting of the sign is
1243  *     described in the <a href="#L10nAlgorithm">localization
1244  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1245  *     value.
1246  *
1247  *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1248  *     "Infinity", respectively, will be output.  These values are not
1249  *     localized.
1250  *
1251  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1252  *     leading zeroes, followed by the decimal separator followed by one or
1253  *     more decimal digits representing the fractional part of <i>m</i>.
1254  *
1255  *     <p> The number of digits in the result for the fractional part of
1256  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1257  *     specified then the default value is {@code 6}. If the precision is less
1258  *     than the number of digits which would appear after the decimal point in
1259  *     the string returned by {@link Float#toString(float)} or {@link
1260  *     Double#toString(double)} respectively, then the value will be rounded
1261  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1262  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1263  *     For a canonical representation of the value, use {@link
1264  *     Float#toString(float)} or {@link Double#toString(double)} as
1265  *     appropriate.
1266  *
1267  * <tr><td valign="top"> {@code 'a'}
1268  *     <td valign="top"> <tt>'&#92;u0061'</tt>
1269  *     <td> Requires the output to be formatted in hexadecimal exponential
1270  *     form.  No localization is applied.
1271  *
1272  *     <p> The result is a string that represents the sign and magnitude
1273  *     (absolute value) of the argument <i>x</i>.
1274  *
1275  *     <p> If <i>x</i> is negative or a negative-zero value then the result
1276  *     will begin with {@code '-'} (<tt>'&#92;u002d'</tt>).
1277  *
1278  *     <p> If <i>x</i> is positive or a positive-zero value and the
1279  *     {@code '+'} flag is given then the result will begin with {@code '+'}
1280  *     (<tt>'&#92;u002b'</tt>).
1281  *
1282  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1283  *
1284  *     <ul>
1285  *
1286  *     <li> If the value is NaN or infinite, the literal strings "NaN" or
1287  *     "Infinity", respectively, will be output.
1288  *
1289  *     <li> If <i>m</i> is zero then it is represented by the string
1290  *     {@code "0x0.0p0"}.
1291  *
1292  *     <li> If <i>m</i> is a {@code double} value with a normalized
1293  *     representation then substrings are used to represent the significand and
1294  *     exponent fields.  The significand is represented by the characters
1295  *     {@code "0x1."} followed by the hexadecimal representation of the rest
1296  *     of the significand as a fraction.  The exponent is represented by
1297  *     {@code 'p'} (<tt>'&#92;u0070'</tt>) followed by a decimal string of the
1298  *     unbiased exponent as if produced by invoking {@link
1299  *     Integer#toString(int) Integer.toString} on the exponent value.  If the
1300  *     precision is specified, the value is rounded to the given number of
1301  *     hexadecimal digits.
1302  *
1303  *     <li> If <i>m</i> is a {@code double} value with a subnormal
1304  *     representation then, unless the precision is specified to be in the range
1305  *     1 through 12, inclusive, the significand is represented by the characters
1306  *     {@code '0x0.'} followed by the hexadecimal representation of the rest of
1307  *     the significand as a fraction, and the exponent represented by
1308  *     {@code 'p-1022'}.  If the precision is in the interval
1309  *     [1,&nbsp;12], the subnormal value is normalized such that it
1310  *     begins with the characters {@code '0x1.'}, rounded to the number of
1311  *     hexadecimal digits of precision, and the exponent adjusted
1312  *     accordingly.  Note that there must be at least one nonzero digit in a
1313  *     subnormal significand.
1314  *
1315  *     </ul>
1316  *
1317  *     <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1318  *     FormatFlagsConversionMismatchException} will be thrown.
1319  *
1320  * <tr><td valign="top"> {@code 'A'}
1321  *     <td valign="top"> <tt>'&#92;u0041'</tt>
1322  *     <td> The upper-case variant of {@code 'a'}.  The entire string
1323  *     representing the number will be converted to upper case including the
1324  *     {@code 'x'} (<tt>'&#92;u0078'</tt>) and {@code 'p'}
1325  *     (<tt>'&#92;u0070'</tt> and all hexadecimal digits {@code 'a'} -
1326  *     {@code 'f'} (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1327  *
1328  * </table>
1329  *
1330  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1331  * Long apply.
1332  *
1333  * <p> If the {@code '#'} flag is given, then the decimal separator will
1334  * always be present.
1335  *
1336  * <p> If no <a name="floatdFlags">flags</a> are given the default formatting
1337  * is as follows:
1338  *
1339  * <ul>
1340  *
1341  * <li> The output is right-justified within the {@code width}
1342  *
1343  * <li> Negative numbers begin with a {@code '-'}
1344  *
1345  * <li> Positive numbers and positive zero do not include a sign or extra
1346  * leading space
1347  *
1348  * <li> No grouping separators are included
1349  *
1350  * <li> The decimal separator will only appear if a digit follows it
1351  *
1352  * </ul>
1353  *
1354  * <p> The <a name="floatDWidth">width</a> is the minimum number of characters
1355  * to be written to the output.  This includes any signs, digits, grouping
1356  * separators, decimal separators, exponential symbol, radix indicator,
1357  * parentheses, and strings representing infinity and NaN as applicable.  If
1358  * the length of the converted value is less than the width then the output
1359  * will be padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1360  * characters equals width.  The padding is on the left by default.  If the
1361  * {@code '-'} flag is given then the padding will be on the right.  If width
1362  * is not specified then there is no minimum.
1363  *
1364  * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'},
1365  * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1366  * after the decimal separator.  If the precision is not specified, then it is
1367  * assumed to be {@code 6}.
1368  *
1369  * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1370  * the total number of significant digits in the resulting magnitude after
1371  * rounding.  If the precision is not specified, then the default value is
1372  * {@code 6}.  If the precision is {@code 0}, then it is taken to be
1373  * {@code 1}.
1374  *
1375  * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1376  * is the number of hexadecimal digits after the radix point.  If the
1377  * precision is not provided, then all of the digits as returned by {@link
1378  * Double#toHexString(double)} will be output.
1379  *
1380  * <p><a name="dnbdec"><b> BigDecimal </b></a>
1381  *
1382  * <p> The following conversions may be applied {@link java.math.BigDecimal
1383  * BigDecimal}.
1384  *
1385  * <table cellpadding=5 summary="floatConv">
1386  *
1387  * <tr><td valign="top"> {@code 'e'}
1388  *     <td valign="top"> <tt>'&#92;u0065'</tt>
1389  *     <td> Requires the output to be formatted using <a
1390  *     name="bscientific">computerized scientific notation</a>.  The <a
1391  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1392  *
1393  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1394  *
1395  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1396  *     will be {@code "+00"}.
1397  *
1398  *     <p> Otherwise, the result is a string that represents the sign and
1399  *     magnitude (absolute value) of the argument.  The formatting of the sign
1400  *     is described in the <a href="#L10nAlgorithm">localization
1401  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1402  *     value.
1403  *
1404  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1405  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1406  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1407  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1408  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1409  *     decimal separator followed by decimal digits representing the fractional
1410  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1411  *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1412  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1413  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1414  *     least two digits.
1415  *
1416  *     <p> The number of digits in the result for the fractional part of
1417  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1418  *     specified then the default value is {@code 6}.  If the precision is
1419  *     less than the number of digits to the right of the decimal point then
1420  *     the value will be rounded using the
1421  *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1422  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1423  *     For a canonical representation of the value, use {@link
1424  *     BigDecimal#toString()}.
1425  *
1426  *     <p> If the {@code ','} flag is given, then an {@link
1427  *     FormatFlagsConversionMismatchException} will be thrown.
1428  *
1429  * <tr><td valign="top"> {@code 'E'}
1430  *     <td valign="top"> <tt>'&#92;u0045'</tt>
1431  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1432  *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1433  *
1434  * <tr><td valign="top"> {@code 'g'}
1435  *     <td valign="top"> <tt>'&#92;u0067'</tt>
1436  *     <td> Requires the output to be formatted in general scientific notation
1437  *     as described below. The <a href="#L10nAlgorithm">localization
1438  *     algorithm</a> is applied.
1439  *
1440  *     <p> After rounding for the precision, the formatting of the resulting
1441  *     magnitude <i>m</i> depends on its value.
1442  *
1443  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1444  *     than 10<sup>precision</sup> then it is represented in <i><a
1445  *     href="#bdecimal">decimal format</a></i>.
1446  *
1447  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1448  *     10<sup>precision</sup>, then it is represented in <i><a
1449  *     href="#bscientific">computerized scientific notation</a></i>.
1450  *
1451  *     <p> The total number of significant digits in <i>m</i> is equal to the
1452  *     precision.  If the precision is not specified, then the default value is
1453  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1454  *     {@code 1}.
1455  *
1456  *     <p> If the {@code '#'} flag is given then an {@link
1457  *     FormatFlagsConversionMismatchException} will be thrown.
1458  *
1459  * <tr><td valign="top"> {@code 'G'}
1460  *     <td valign="top"> <tt>'&#92;u0047'</tt>
1461  *     <td> The upper-case variant of {@code 'g'}.
1462  *
1463  * <tr><td valign="top"> {@code 'f'}
1464  *     <td valign="top"> <tt>'&#92;u0066'</tt>
1465  *     <td> Requires the output to be formatted using <a name="bdecimal">decimal
1466  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1467  *     applied.
1468  *
1469  *     <p> The result is a string that represents the sign and magnitude
1470  *     (absolute value) of the argument.  The formatting of the sign is
1471  *     described in the <a href="#L10nAlgorithm">localization
1472  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1473  *     value.
1474  *
1475  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1476  *     leading zeroes, followed by the decimal separator followed by one or
1477  *     more decimal digits representing the fractional part of <i>m</i>.
1478  *
1479  *     <p> The number of digits in the result for the fractional part of
1480  *     <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1481  *     specified then the default value is {@code 6}.  If the precision is
1482  *     less than the number of digits to the right of the decimal point
1483  *     then the value will be rounded using the
1484  *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1485  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1486  *     For a canonical representation of the value, use {@link
1487  *     BigDecimal#toString()}.
1488  *
1489  * </table>
1490  *
1491  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1492  * Long apply.
1493  *
1494  * <p> If the {@code '#'} flag is given, then the decimal separator will
1495  * always be present.
1496  *
1497  * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1498  * given is the same as for Float and Double.
1499  *
1500  * <p> The specification of <a href="#floatDWidth">width</a> and <a
1501  * href="#floatDPrec">precision</a> is the same as defined for Float and
1502  * Double.
1503  *
1504  * <h4><a name="ddt">Date/Time</a></h4>
1505  *
1506  * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1507  * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
1508  *
1509  * <table cellpadding=5 summary="DTConv">
1510  *
1511  * <tr><td valign="top"> {@code 't'}
1512  *     <td valign="top"> <tt>'&#92;u0074'</tt>
1513  *     <td> Prefix for date and time conversion characters.
1514  * <tr><td valign="top"> {@code 'T'}
1515  *     <td valign="top"> <tt>'&#92;u0054'</tt>
1516  *     <td> The upper-case variant of {@code 't'}.
1517  *
1518  * </table>
1519  *
1520  * <p> The following date and time conversion character suffixes are defined
1521  * for the {@code 't'} and {@code 'T'} conversions.  The types are similar to
1522  * but not completely identical to those defined by GNU {@code date} and
1523  * POSIX {@code strftime(3c)}.  Additional conversion types are provided to
1524  * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1525  * within the second).
1526  *
1527  * <p> The following conversion characters are used for formatting times:
1528  *
1529  * <table cellpadding=5 summary="time">
1530  *
1531  * <tr><td valign="top"> {@code 'H'}
1532  *     <td valign="top"> <tt>'&#92;u0048'</tt>
1533  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
1534  *     a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1535  *     corresponds to midnight.
1536  *
1537  * <tr><td valign="top">{@code 'I'}
1538  *     <td valign="top"> <tt>'&#92;u0049'</tt>
1539  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
1540  *     zero as necessary, i.e.  {@code 01 - 12}.  {@code 01} corresponds to
1541  *     one o'clock (either morning or afternoon).
1542  *
1543  * <tr><td valign="top">{@code 'k'}
1544  *     <td valign="top"> <tt>'&#92;u006b'</tt>
1545  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1546  *     {@code 0} corresponds to midnight.
1547  *
1548  * <tr><td valign="top">{@code 'l'}
1549  *     <td valign="top"> <tt>'&#92;u006c'</tt>
1550  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.  {@code 1}
1551  *     corresponds to one o'clock (either morning or afternoon).
1552  *
1553  * <tr><td valign="top">{@code 'M'}
1554  *     <td valign="top"> <tt>'&#92;u004d'</tt>
1555  *     <td> Minute within the hour formatted as two digits with a leading zero
1556  *     as necessary, i.e.  {@code 00 - 59}.
1557  *
1558  * <tr><td valign="top">{@code 'S'}
1559  *     <td valign="top"> <tt>'&#92;u0053'</tt>
1560  *     <td> Seconds within the minute, formatted as two digits with a leading
1561  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1562  *     value required to support leap seconds).
1563  *
1564  * <tr><td valign="top">{@code 'L'}
1565  *     <td valign="top"> <tt>'&#92;u004c'</tt>
1566  *     <td> Millisecond within the second formatted as three digits with
1567  *     leading zeros as necessary, i.e. {@code 000 - 999}.
1568  *
1569  * <tr><td valign="top">{@code 'N'}
1570  *     <td valign="top"> <tt>'&#92;u004e'</tt>
1571  *     <td> Nanosecond within the second, formatted as nine digits with leading
1572  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.  The precision
1573  *     of this value is limited by the resolution of the underlying operating
1574  *     system or hardware.
1575  *
1576  * <tr><td valign="top">{@code 'p'}
1577  *     <td valign="top"> <tt>'&#92;u0070'</tt>
1578  *     <td> Locale-specific {@linkplain
1579  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1580  *     in lower case, e.g."{@code am}" or "{@code pm}".  Use of the
1581  *     conversion prefix {@code 'T'} forces this output to upper case.  (Note
1582  *     that {@code 'p'} produces lower-case output.  This is different from
1583  *     GNU {@code date} and POSIX {@code strftime(3c)} which produce
1584  *     upper-case output.)
1585  *
1586  * <tr><td valign="top">{@code 'z'}
1587  *     <td valign="top"> <tt>'&#92;u007a'</tt>
1588  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1589  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
1590  *     value will be adjusted as necessary for Daylight Saving Time.  For
1591  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1592  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1593  *     instance of the Java virtual machine.
1594  *
1595  * <tr><td valign="top">{@code 'Z'}
1596  *     <td valign="top"> <tt>'&#92;u005a'</tt>
1597  *     <td> A string representing the abbreviation for the time zone.  This
1598  *     value will be adjusted as necessary for Daylight Saving Time.  For
1599  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1600  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1601  *     instance of the Java virtual machine.  The Formatter's locale will
1602  *     supersede the locale of the argument (if any).
1603  *
1604  * <tr><td valign="top">{@code 's'}
1605  *     <td valign="top"> <tt>'&#92;u0073'</tt>
1606  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
1607  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1608  *     {@code Long.MAX_VALUE/1000}.
1609  *
1610  * <tr><td valign="top">{@code 'Q'}
1611  *     <td valign="top"> <tt>'&#92;u004f'</tt>
1612  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
1613  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1614  *     {@code Long.MAX_VALUE}. The precision of this value is limited by
1615  *     the resolution of the underlying operating system or hardware.
1616  *
1617  * </table>
1618  *
1619  * <p> The following conversion characters are used for formatting dates:
1620  *
1621  * <table cellpadding=5 summary="date">
1622  *
1623  * <tr><td valign="top">{@code 'B'}
1624  *     <td valign="top"> <tt>'&#92;u0042'</tt>
1625  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1626  *     full month name}, e.g. {@code "January"}, {@code "February"}.
1627  *
1628  * <tr><td valign="top">{@code 'b'}
1629  *     <td valign="top"> <tt>'&#92;u0062'</tt>
1630  *     <td> Locale-specific {@linkplain
1631  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1632  *     e.g. {@code "Jan"}, {@code "Feb"}.
1633  *
1634  * <tr><td valign="top">{@code 'h'}
1635  *     <td valign="top"> <tt>'&#92;u0068'</tt>
1636  *     <td> Same as {@code 'b'}.
1637  *
1638  * <tr><td valign="top">{@code 'A'}
1639  *     <td valign="top"> <tt>'&#92;u0041'</tt>
1640  *     <td> Locale-specific full name of the {@linkplain
1641  *     java.text.DateFormatSymbols#getWeekdays day of the week},
1642  *     e.g. {@code "Sunday"}, {@code "Monday"}
1643  *
1644  * <tr><td valign="top">{@code 'a'}
1645  *     <td valign="top"> <tt>'&#92;u0061'</tt>
1646  *     <td> Locale-specific short name of the {@linkplain
1647  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
1648  *     e.g. {@code "Sun"}, {@code "Mon"}
1649  *
1650  * <tr><td valign="top">{@code 'C'}
1651  *     <td valign="top"> <tt>'&#92;u0043'</tt>
1652  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
1653  *     with leading zero as necessary, i.e. {@code 00 - 99}
1654  *
1655  * <tr><td valign="top">{@code 'Y'}
1656  *     <td valign="top"> <tt>'&#92;u0059'</tt> <td> Year, formatted to at least
1657  *     four digits with leading zeros as necessary, e.g. {@code 0092} equals
1658  *     {@code 92} CE for the Gregorian calendar.
1659  *
1660  * <tr><td valign="top">{@code 'y'}
1661  *     <td valign="top"> <tt>'&#92;u0079'</tt>
1662  *     <td> Last two digits of the year, formatted with leading zeros as
1663  *     necessary, i.e. {@code 00 - 99}.
1664  *
1665  * <tr><td valign="top">{@code 'j'}
1666  *     <td valign="top"> <tt>'&#92;u006a'</tt>
1667  *     <td> Day of year, formatted as three digits with leading zeros as
1668  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1669  *     {@code 001} corresponds to the first day of the year.
1670  *
1671  * <tr><td valign="top">{@code 'm'}
1672  *     <td valign="top"> <tt>'&#92;u006d'</tt>
1673  *     <td> Month, formatted as two digits with leading zeros as necessary,
1674  *     i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1675  *     year and ("{@code 13}" is a special value required to support lunar
1676  *     calendars).
1677  *
1678  * <tr><td valign="top">{@code 'd'}
1679  *     <td valign="top"> <tt>'&#92;u0064'</tt>
1680  *     <td> Day of month, formatted as two digits with leading zeros as
1681  *     necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1682  *     of the month.
1683  *
1684  * <tr><td valign="top">{@code 'e'}
1685  *     <td valign="top"> <tt>'&#92;u0065'</tt>
1686  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1687  *     "{@code 1}" is the first day of the month.
1688  *
1689  * </table>
1690  *
1691  * <p> The following conversion characters are used for formatting common
1692  * date/time compositions.
1693  *
1694  * <table cellpadding=5 summary="composites">
1695  *
1696  * <tr><td valign="top">{@code 'R'}
1697  *     <td valign="top"> <tt>'&#92;u0052'</tt>
1698  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1699  *
1700  * <tr><td valign="top">{@code 'T'}
1701  *     <td valign="top"> <tt>'&#92;u0054'</tt>
1702  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1703  *
1704  * <tr><td valign="top">{@code 'r'}
1705  *     <td valign="top"> <tt>'&#92;u0072'</tt>
1706  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1707  *     %Tp"}.  The location of the morning or afternoon marker
1708  *     ({@code '%Tp'}) may be locale-dependent.
1709  *
1710  * <tr><td valign="top">{@code 'D'}
1711  *     <td valign="top"> <tt>'&#92;u0044'</tt>
1712  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
1713  *
1714  * <tr><td valign="top">{@code 'F'}
1715  *     <td valign="top"> <tt>'&#92;u0046'</tt>
1716  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1717  *     complete date formatted as {@code "%tY-%tm-%td"}.
1718  *
1719  * <tr><td valign="top">{@code 'c'}
1720  *     <td valign="top"> <tt>'&#92;u0063'</tt>
1721  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1722  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1723  *
1724  * </table>
1725  *
1726  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1727  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
1728  * FormatFlagsConversionMismatchException} will be thrown.
1729  *
1730  * <p> The width is the minimum number of characters to
1731  * be written to the output.  If the length of the converted value is less than
1732  * the {@code width} then the output will be padded by spaces
1733  * (<tt>'&#92;u0020'</tt>) until the total number of characters equals width.
1734  * The padding is on the left by default.  If the {@code '-'} flag is given
1735  * then the padding will be on the right.  If width is not specified then there
1736  * is no minimum.
1737  *
1738  * <p> The precision is not applicable.  If the precision is specified then an
1739  * {@link IllegalFormatPrecisionException} will be thrown.
1740  *
1741  * <h4><a name="dper">Percent</a></h4>
1742  *
1743  * <p> The conversion does not correspond to any argument.
1744  *
1745  * <table cellpadding=5 summary="DTConv">
1746  *
1747  * <tr><td valign="top">{@code '%'}
1748  *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
1749  *
1750  * <p> The width is the minimum number of characters to
1751  * be written to the output including the {@code '%'}.  If the length of the
1752  * converted value is less than the {@code width} then the output will be
1753  * padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1754  * characters equals width.  The padding is on the left.  If width is not
1755  * specified then just the {@code '%'} is output.
1756  *
1757  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1758  * conversions</a> applies.  If any other flags are provided, then a
1759  * {@link FormatFlagsConversionMismatchException} will be thrown.
1760  *
1761  * <p> The precision is not applicable.  If the precision is specified an
1762  * {@link IllegalFormatPrecisionException} will be thrown.
1763  *
1764  * </table>
1765  *
1766  * <h4><a name="dls">Line Separator</a></h4>
1767  *
1768  * <p> The conversion does not correspond to any argument.
1769  *
1770  * <table cellpadding=5 summary="DTConv">
1771  *
1772  * <tr><td valign="top">{@code 'n'}
1773  *     <td> the platform-specific line separator as returned by {@link
1774  *     System#getProperty System.getProperty("line.separator")}.
1775  *
1776  * </table>
1777  *
1778  * <p> Flags, width, and precision are not applicable.  If any are provided an
1779  * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1780  * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1781  *
1782  * <h4><a name="dpos">Argument Index</a></h4>
1783  *
1784  * <p> Format specifiers can reference arguments in three ways:
1785  *
1786  * <ul>
1787  *
1788  * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1789  * argument index.  The argument index is a decimal integer indicating the
1790  * position of the argument in the argument list.  The first argument is
1791  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.  An argument
1792  * may be referenced more than once.
1793  *
1794  * <p> For example:
1795  *
1796  * <blockquote><pre>
1797  *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1798  *                    "a", "b", "c", "d")
1799  *   // -&gt; "d c b a d c b a"
1800  * </pre></blockquote>
1801  *
1802  * <li> <i>Relative indexing</i> is used when the format specifier contains a
1803  * {@code '<'} (<tt>'&#92;u003c'</tt>) flag which causes the argument for
1804  * the previous format specifier to be re-used.  If there is no previous
1805  * argument, then a {@link MissingFormatArgumentException} is thrown.
1806  *
1807  * <blockquote><pre>
1808  *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1809  *    // -&gt; "a b b b"
1810  *    // "c" and "d" are ignored because they are not referenced
1811  * </pre></blockquote>
1812  *
1813  * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1814  * neither an argument index nor a {@code '<'} flag.  Each format specifier
1815  * which uses ordinary indexing is assigned a sequential implicit index into
1816  * argument list which is independent of the indices used by explicit or
1817  * relative indexing.
1818  *
1819  * <blockquote><pre>
1820  *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
1821  *   // -&gt; "a b c d"
1822  * </pre></blockquote>
1823  *
1824  * </ul>
1825  *
1826  * <p> It is possible to have a format string which uses all forms of indexing,
1827  * for example:
1828  *
1829  * <blockquote><pre>
1830  *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1831  *   // -&gt; "b a a b"
1832  *   // "c" and "d" are ignored because they are not referenced
1833  * </pre></blockquote>
1834  *
1835  * <p> The maximum number of arguments is limited by the maximum dimension of a
1836  * Java array as defined by
1837  * <cite>The Java&trade; Virtual Machine Specification</cite>.
1838  * If the argument index is does not correspond to an
1839  * available argument, then a {@link MissingFormatArgumentException} is thrown.
1840  *
1841  * <p> If there are more arguments than format specifiers, the extra arguments
1842  * are ignored.
1843  *
1844  * <p> Unless otherwise specified, passing a {@code null} argument to any
1845  * method or constructor in this class will cause a {@link
1846  * NullPointerException} to be thrown.
1847  *
1848  * @author  Iris Clark
1849  * @since 1.5
1850  */
1851 public final class Formatter implements Closeable, Flushable {
1852     private Appendable a;
1853     private final Locale l;
1854 
1855     private IOException lastException;
1856 
1857     private final char zero;
1858     private static double scaleUp;
1859 
1860     // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1861     // + 3 (max # exp digits) + 4 (error) = 30
1862     private static final int MAX_FD_CHARS = 30;
1863 
1864     /**
1865      * Returns a charset object for the given charset name.
1866      * @throws NullPointerException          is csn is null
1867      * @throws UnsupportedEncodingException  if the charset is not supported
1868      */
1869     private static Charset toCharset(String csn)
1870         throws UnsupportedEncodingException
1871     {
1872         Objects.requireNonNull(csn, "charsetName");
1873         try {
1874             return Charset.forName(csn);
1875         } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1876             // UnsupportedEncodingException should be thrown
1877             throw new UnsupportedEncodingException(csn);
1878         }
1879     }
1880 
1881     private static final Appendable nonNullAppendable(Appendable a) {
1882         if (a == null)
1883             return new StringBuilder();
1884 
1885         return a;
1886     }
1887 
1888     /* Private constructors */
1889     private Formatter(Locale l, Appendable a) {
1890         this.a = a;
1891         this.l = l;
1892         this.zero = getZero(l);
1893     }
1894 
1895     private Formatter(Charset charset, Locale l, File file)
1896         throws FileNotFoundException
1897     {
1898         this(l,
1899              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1900     }
1901 
1902     /**
1903      * Constructs a new formatter.
1904      *
1905      * <p> The destination of the formatted output is a {@link StringBuilder}
1906      * which may be retrieved by invoking {@link #out out()} and whose
1907      * current content may be converted into a string by invoking {@link
1908      * #toString toString()}.  The locale used is the {@linkplain
1909      * Locale#getDefault(Locale.Category) default locale} for
1910      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1911      * virtual machine.
1912      */
1913     public Formatter() {
1914         this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1915     }
1916 
1917     /**
1918      * Constructs a new formatter with the specified destination.
1919      *
1920      * <p> The locale used is the {@linkplain
1921      * Locale#getDefault(Locale.Category) default locale} for
1922      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1923      * virtual machine.
1924      *
1925      * @param  a
1926      *         Destination for the formatted output.  If {@code a} is
1927      *         {@code null} then a {@link StringBuilder} will be created.
1928      */
1929     public Formatter(Appendable a) {
1930         this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1931     }
1932 
1933     /**
1934      * Constructs a new formatter with the specified locale.
1935      *
1936      * <p> The destination of the formatted output is a {@link StringBuilder}
1937      * which may be retrieved by invoking {@link #out out()} and whose current
1938      * content may be converted into a string by invoking {@link #toString
1939      * toString()}.
1940      *
1941      * @param  l
1942      *         The {@linkplain java.util.Locale locale} to apply during
1943      *         formatting.  If {@code l} is {@code null} then no localization
1944      *         is applied.
1945      */
1946     public Formatter(Locale l) {
1947         this(l, new StringBuilder());
1948     }
1949 
1950     /**
1951      * Constructs a new formatter with the specified destination and locale.
1952      *
1953      * @param  a
1954      *         Destination for the formatted output.  If {@code a} is
1955      *         {@code null} then a {@link StringBuilder} will be created.
1956      *
1957      * @param  l
1958      *         The {@linkplain java.util.Locale locale} to apply during
1959      *         formatting.  If {@code l} is {@code null} then no localization
1960      *         is applied.
1961      */
1962     public Formatter(Appendable a, Locale l) {
1963         this(l, nonNullAppendable(a));
1964     }
1965 
1966     /**
1967      * Constructs a new formatter with the specified file name.
1968      *
1969      * <p> The charset used is the {@linkplain
1970      * java.nio.charset.Charset#defaultCharset() default charset} for this
1971      * instance of the Java virtual machine.
1972      *
1973      * <p> The locale used is the {@linkplain
1974      * Locale#getDefault(Locale.Category) default locale} for
1975      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1976      * virtual machine.
1977      *
1978      * @param  fileName
1979      *         The name of the file to use as the destination of this
1980      *         formatter.  If the file exists then it will be truncated to
1981      *         zero size; otherwise, a new file will be created.  The output
1982      *         will be written to the file and is buffered.
1983      *
1984      * @throws  SecurityException
1985      *          If a security manager is present and {@link
1986      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
1987      *          access to the file
1988      *
1989      * @throws  FileNotFoundException
1990      *          If the given file name does not denote an existing, writable
1991      *          regular file and a new regular file of that name cannot be
1992      *          created, or if some other error occurs while opening or
1993      *          creating the file
1994      */
1995     public Formatter(String fileName) throws FileNotFoundException {
1996         this(Locale.getDefault(Locale.Category.FORMAT),
1997              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
1998     }
1999 
2000     /**
2001      * Constructs a new formatter with the specified file name and charset.
2002      *
2003      * <p> The locale used is the {@linkplain
2004      * Locale#getDefault(Locale.Category) default locale} for
2005      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2006      * virtual machine.
2007      *
2008      * @param  fileName
2009      *         The name of the file to use as the destination of this
2010      *         formatter.  If the file exists then it will be truncated to
2011      *         zero size; otherwise, a new file will be created.  The output
2012      *         will be written to the file and is buffered.
2013      *
2014      * @param  csn
2015      *         The name of a supported {@linkplain java.nio.charset.Charset
2016      *         charset}
2017      *
2018      * @throws  FileNotFoundException
2019      *          If the given file name does not denote an existing, writable
2020      *          regular file and a new regular file of that name cannot be
2021      *          created, or if some other error occurs while opening or
2022      *          creating the file
2023      *
2024      * @throws  SecurityException
2025      *          If a security manager is present and {@link
2026      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2027      *          access to the file
2028      *
2029      * @throws  UnsupportedEncodingException
2030      *          If the named charset is not supported
2031      */
2032     public Formatter(String fileName, String csn)
2033         throws FileNotFoundException, UnsupportedEncodingException
2034     {
2035         this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2036     }
2037 
2038     /**
2039      * Constructs a new formatter with the specified file name, charset, and
2040      * locale.
2041      *
2042      * @param  fileName
2043      *         The name of the file to use as the destination of this
2044      *         formatter.  If the file exists then it will be truncated to
2045      *         zero size; otherwise, a new file will be created.  The output
2046      *         will be written to the file and is buffered.
2047      *
2048      * @param  csn
2049      *         The name of a supported {@linkplain java.nio.charset.Charset
2050      *         charset}
2051      *
2052      * @param  l
2053      *         The {@linkplain java.util.Locale locale} to apply during
2054      *         formatting.  If {@code l} is {@code null} then no localization
2055      *         is applied.
2056      *
2057      * @throws  FileNotFoundException
2058      *          If the given file name does not denote an existing, writable
2059      *          regular file and a new regular file of that name cannot be
2060      *          created, or if some other error occurs while opening or
2061      *          creating the file
2062      *
2063      * @throws  SecurityException
2064      *          If a security manager is present and {@link
2065      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2066      *          access to the file
2067      *
2068      * @throws  UnsupportedEncodingException
2069      *          If the named charset is not supported
2070      */
2071     public Formatter(String fileName, String csn, Locale l)
2072         throws FileNotFoundException, UnsupportedEncodingException
2073     {
2074         this(toCharset(csn), l, new File(fileName));
2075     }
2076 
2077     /**
2078      * Constructs a new formatter with the specified file.
2079      *
2080      * <p> The charset used is the {@linkplain
2081      * java.nio.charset.Charset#defaultCharset() default charset} for this
2082      * instance of the Java virtual machine.
2083      *
2084      * <p> The locale used is the {@linkplain
2085      * Locale#getDefault(Locale.Category) default locale} for
2086      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2087      * virtual machine.
2088      *
2089      * @param  file
2090      *         The file to use as the destination of this formatter.  If the
2091      *         file exists then it will be truncated to zero size; otherwise,
2092      *         a new file will be created.  The output will be written to the
2093      *         file and is buffered.
2094      *
2095      * @throws  SecurityException
2096      *          If a security manager is present and {@link
2097      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2098      *          write access to the file
2099      *
2100      * @throws  FileNotFoundException
2101      *          If the given file object does not denote an existing, writable
2102      *          regular file and a new regular file of that name cannot be
2103      *          created, or if some other error occurs while opening or
2104      *          creating the file
2105      */
2106     public Formatter(File file) throws FileNotFoundException {
2107         this(Locale.getDefault(Locale.Category.FORMAT),
2108              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2109     }
2110 
2111     /**
2112      * Constructs a new formatter with the specified file and charset.
2113      *
2114      * <p> The locale used is the {@linkplain
2115      * Locale#getDefault(Locale.Category) default locale} for
2116      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2117      * virtual machine.
2118      *
2119      * @param  file
2120      *         The file to use as the destination of this formatter.  If the
2121      *         file exists then it will be truncated to zero size; otherwise,
2122      *         a new file will be created.  The output will be written to the
2123      *         file and is buffered.
2124      *
2125      * @param  csn
2126      *         The name of a supported {@linkplain java.nio.charset.Charset
2127      *         charset}
2128      *
2129      * @throws  FileNotFoundException
2130      *          If the given file object does not denote an existing, writable
2131      *          regular file and a new regular file of that name cannot be
2132      *          created, or if some other error occurs while opening or
2133      *          creating the file
2134      *
2135      * @throws  SecurityException
2136      *          If a security manager is present and {@link
2137      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2138      *          write access to the file
2139      *
2140      * @throws  UnsupportedEncodingException
2141      *          If the named charset is not supported
2142      */
2143     public Formatter(File file, String csn)
2144         throws FileNotFoundException, UnsupportedEncodingException
2145     {
2146         this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2147     }
2148 
2149     /**
2150      * Constructs a new formatter with the specified file, charset, and
2151      * locale.
2152      *
2153      * @param  file
2154      *         The file to use as the destination of this formatter.  If the
2155      *         file exists then it will be truncated to zero size; otherwise,
2156      *         a new file will be created.  The output will be written to the
2157      *         file and is buffered.
2158      *
2159      * @param  csn
2160      *         The name of a supported {@linkplain java.nio.charset.Charset
2161      *         charset}
2162      *
2163      * @param  l
2164      *         The {@linkplain java.util.Locale locale} to apply during
2165      *         formatting.  If {@code l} is {@code null} then no localization
2166      *         is applied.
2167      *
2168      * @throws  FileNotFoundException
2169      *          If the given file object does not denote an existing, writable
2170      *          regular file and a new regular file of that name cannot be
2171      *          created, or if some other error occurs while opening or
2172      *          creating the file
2173      *
2174      * @throws  SecurityException
2175      *          If a security manager is present and {@link
2176      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2177      *          write access to the file
2178      *
2179      * @throws  UnsupportedEncodingException
2180      *          If the named charset is not supported
2181      */
2182     public Formatter(File file, String csn, Locale l)
2183         throws FileNotFoundException, UnsupportedEncodingException
2184     {
2185         this(toCharset(csn), l, file);
2186     }
2187 
2188     /**
2189      * Constructs a new formatter with the specified print stream.
2190      *
2191      * <p> The locale used is the {@linkplain
2192      * Locale#getDefault(Locale.Category) default locale} for
2193      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2194      * virtual machine.
2195      *
2196      * <p> Characters are written to the given {@link java.io.PrintStream
2197      * PrintStream} object and are therefore encoded using that object's
2198      * charset.
2199      *
2200      * @param  ps
2201      *         The stream to use as the destination of this formatter.
2202      */
2203     public Formatter(PrintStream ps) {
2204         this(Locale.getDefault(Locale.Category.FORMAT),
2205              (Appendable)Objects.requireNonNull(ps));
2206     }
2207 
2208     /**
2209      * Constructs a new formatter with the specified output stream.
2210      *
2211      * <p> The charset used is the {@linkplain
2212      * java.nio.charset.Charset#defaultCharset() default charset} for this
2213      * instance of the Java virtual machine.
2214      *
2215      * <p> The locale used is the {@linkplain
2216      * Locale#getDefault(Locale.Category) default locale} for
2217      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2218      * virtual machine.
2219      *
2220      * @param  os
2221      *         The output stream to use as the destination of this formatter.
2222      *         The output will be buffered.
2223      */
2224     public Formatter(OutputStream os) {
2225         this(Locale.getDefault(Locale.Category.FORMAT),
2226              new BufferedWriter(new OutputStreamWriter(os)));
2227     }
2228 
2229     /**
2230      * Constructs a new formatter with the specified output stream and
2231      * charset.
2232      *
2233      * <p> The locale used is the {@linkplain
2234      * Locale#getDefault(Locale.Category) default locale} for
2235      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2236      * virtual machine.
2237      *
2238      * @param  os
2239      *         The output stream to use as the destination of this formatter.
2240      *         The output will be buffered.
2241      *
2242      * @param  csn
2243      *         The name of a supported {@linkplain java.nio.charset.Charset
2244      *         charset}
2245      *
2246      * @throws  UnsupportedEncodingException
2247      *          If the named charset is not supported
2248      */
2249     public Formatter(OutputStream os, String csn)
2250         throws UnsupportedEncodingException
2251     {
2252         this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2253     }
2254 
2255     /**
2256      * Constructs a new formatter with the specified output stream, charset,
2257      * and locale.
2258      *
2259      * @param  os
2260      *         The output stream to use as the destination of this formatter.
2261      *         The output will be buffered.
2262      *
2263      * @param  csn
2264      *         The name of a supported {@linkplain java.nio.charset.Charset
2265      *         charset}
2266      *
2267      * @param  l
2268      *         The {@linkplain java.util.Locale locale} to apply during
2269      *         formatting.  If {@code l} is {@code null} then no localization
2270      *         is applied.
2271      *
2272      * @throws  UnsupportedEncodingException
2273      *          If the named charset is not supported
2274      */
2275     public Formatter(OutputStream os, String csn, Locale l)
2276         throws UnsupportedEncodingException
2277     {
2278         this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2279     }
2280 
2281     private static char getZero(Locale l) {
2282         if ((l != null) && !l.equals(Locale.US)) {
2283             DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2284             return dfs.getZeroDigit();
2285         } else {
2286             return '0';
2287         }
2288     }
2289 
2290     /**
2291      * Returns the locale set by the construction of this formatter.
2292      *
2293      * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2294      * for this object which has a locale argument does not change this value.
2295      *
2296      * @return  {@code null} if no localization is applied, otherwise a
2297      *          locale
2298      *
2299      * @throws  FormatterClosedException
2300      *          If this formatter has been closed by invoking its {@link
2301      *          #close()} method
2302      */
2303     public Locale locale() {
2304         ensureOpen();
2305         return l;
2306     }
2307 
2308     /**
2309      * Returns the destination for the output.
2310      *
2311      * @return  The destination for the output
2312      *
2313      * @throws  FormatterClosedException
2314      *          If this formatter has been closed by invoking its {@link
2315      *          #close()} method
2316      */
2317     public Appendable out() {
2318         ensureOpen();
2319         return a;
2320     }
2321 
2322     /**
2323      * Returns the result of invoking {@code toString()} on the destination
2324      * for the output.  For example, the following code formats text into a
2325      * {@link StringBuilder} then retrieves the resultant string:
2326      *
2327      * <blockquote><pre>
2328      *   Formatter f = new Formatter();
2329      *   f.format("Last reboot at %tc", lastRebootDate);
2330      *   String s = f.toString();
2331      *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2332      * </pre></blockquote>
2333      *
2334      * <p> An invocation of this method behaves in exactly the same way as the
2335      * invocation
2336      *
2337      * <pre>
2338      *     out().toString() </pre>
2339      *
2340      * <p> Depending on the specification of {@code toString} for the {@link
2341      * Appendable}, the returned string may or may not contain the characters
2342      * written to the destination.  For instance, buffers typically return
2343      * their contents in {@code toString()}, but streams cannot since the
2344      * data is discarded.
2345      *
2346      * @return  The result of invoking {@code toString()} on the destination
2347      *          for the output
2348      *
2349      * @throws  FormatterClosedException
2350      *          If this formatter has been closed by invoking its {@link
2351      *          #close()} method
2352      */
2353     public String toString() {
2354         ensureOpen();
2355         return a.toString();
2356     }
2357 
2358     /**
2359      * Flushes this formatter.  If the destination implements the {@link
2360      * java.io.Flushable} interface, its {@code flush} method will be invoked.
2361      *
2362      * <p> Flushing a formatter writes any buffered output in the destination
2363      * to the underlying stream.
2364      *
2365      * @throws  FormatterClosedException
2366      *          If this formatter has been closed by invoking its {@link
2367      *          #close()} method
2368      */
2369     public void flush() {
2370         ensureOpen();
2371         if (a instanceof Flushable) {
2372             try {
2373                 ((Flushable)a).flush();
2374             } catch (IOException ioe) {
2375                 lastException = ioe;
2376             }
2377         }
2378     }
2379 
2380     /**
2381      * Closes this formatter.  If the destination implements the {@link
2382      * java.io.Closeable} interface, its {@code close} method will be invoked.
2383      *
2384      * <p> Closing a formatter allows it to release resources it may be holding
2385      * (such as open files).  If the formatter is already closed, then invoking
2386      * this method has no effect.
2387      *
2388      * <p> Attempting to invoke any methods except {@link #ioException()} in
2389      * this formatter after it has been closed will result in a {@link
2390      * FormatterClosedException}.
2391      */
2392     public void close() {
2393         if (a == null)
2394             return;
2395         try {
2396             if (a instanceof Closeable)
2397                 ((Closeable)a).close();
2398         } catch (IOException ioe) {
2399             lastException = ioe;
2400         } finally {
2401             a = null;
2402         }
2403     }
2404 
2405     private void ensureOpen() {
2406         if (a == null)
2407             throw new FormatterClosedException();
2408     }
2409 
2410     /**
2411      * Returns the {@code IOException} last thrown by this formatter's {@link
2412      * Appendable}.
2413      *
2414      * <p> If the destination's {@code append()} method never throws
2415      * {@code IOException}, then this method will always return {@code null}.
2416      *
2417      * @return  The last exception thrown by the Appendable or {@code null} if
2418      *          no such exception exists.
2419      */
2420     public IOException ioException() {
2421         return lastException;
2422     }
2423 
2424     /**
2425      * Writes a formatted string to this object's destination using the
2426      * specified format string and arguments.  The locale used is the one
2427      * defined during the construction of this formatter.
2428      *
2429      * @param  format
2430      *         A format string as described in <a href="#syntax">Format string
2431      *         syntax</a>.
2432      *
2433      * @param  args
2434      *         Arguments referenced by the format specifiers in the format
2435      *         string.  If there are more arguments than format specifiers, the
2436      *         extra arguments are ignored.  The maximum number of arguments is
2437      *         limited by the maximum dimension of a Java array as defined by
2438      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2439      *
2440      * @throws  IllegalFormatException
2441      *          If a format string contains an illegal syntax, a format
2442      *          specifier that is incompatible with the given arguments,
2443      *          insufficient arguments given the format string, or other
2444      *          illegal conditions.  For specification of all possible
2445      *          formatting errors, see the <a href="#detail">Details</a>
2446      *          section of the formatter class specification.
2447      *
2448      * @throws  FormatterClosedException
2449      *          If this formatter has been closed by invoking its {@link
2450      *          #close()} method
2451      *
2452      * @return  This formatter
2453      */
2454     public Formatter format(String format, Object ... args) {
2455         return format(l, format, args);
2456     }
2457 
2458     /**
2459      * Writes a formatted string to this object's destination using the
2460      * specified locale, format string, and arguments.
2461      *
2462      * @param  l
2463      *         The {@linkplain java.util.Locale locale} to apply during
2464      *         formatting.  If {@code l} is {@code null} then no localization
2465      *         is applied.  This does not change this object's locale that was
2466      *         set during construction.
2467      *
2468      * @param  format
2469      *         A format string as described in <a href="#syntax">Format string
2470      *         syntax</a>
2471      *
2472      * @param  args
2473      *         Arguments referenced by the format specifiers in the format
2474      *         string.  If there are more arguments than format specifiers, the
2475      *         extra arguments are ignored.  The maximum number of arguments is
2476      *         limited by the maximum dimension of a Java array as defined by
2477      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2478      *
2479      * @throws  IllegalFormatException
2480      *          If a format string contains an illegal syntax, a format
2481      *          specifier that is incompatible with the given arguments,
2482      *          insufficient arguments given the format string, or other
2483      *          illegal conditions.  For specification of all possible
2484      *          formatting errors, see the <a href="#detail">Details</a>
2485      *          section of the formatter class specification.
2486      *
2487      * @throws  FormatterClosedException
2488      *          If this formatter has been closed by invoking its {@link
2489      *          #close()} method
2490      *
2491      * @return  This formatter
2492      */
2493     public Formatter format(Locale l, String format, Object ... args) {
2494         ensureOpen();
2495 
2496         // index of last argument referenced
2497         int last = -1;
2498         // last ordinary index
2499         int lasto = -1;
2500 
2501         FormatString[] fsa = parse(format);
2502         for (int i = 0; i < fsa.length; i++) {
2503             FormatString fs = fsa[i];
2504             int index = fs.index();
2505             try {
2506                 switch (index) {
2507                 case -2:  // fixed string, "%n", or "%%"
2508                     fs.print(null, l);
2509                     break;
2510                 case -1:  // relative index
2511                     if (last < 0 || (args != null && last > args.length - 1))
2512                         throw new MissingFormatArgumentException(fs.toString());
2513                     fs.print((args == null ? null : args[last]), l);
2514                     break;
2515                 case 0:  // ordinary index
2516                     lasto++;
2517                     last = lasto;
2518                     if (args != null && lasto > args.length - 1)
2519                         throw new MissingFormatArgumentException(fs.toString());
2520                     fs.print((args == null ? null : args[lasto]), l);
2521                     break;
2522                 default:  // explicit index
2523                     last = index - 1;
2524                     if (args != null && last > args.length - 1)
2525                         throw new MissingFormatArgumentException(fs.toString());
2526                     fs.print((args == null ? null : args[last]), l);
2527                     break;
2528                 }
2529             } catch (IOException x) {
2530                 lastException = x;
2531             }
2532         }
2533         return this;
2534     }
2535 
2536     // %[argument_index$][flags][width][.precision][t]conversion
2537     private static final String formatSpecifier
2538         = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2539 
2540     private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2541 
2542     /**
2543      * Finds format specifiers in the format string.
2544      */
2545     private FormatString[] parse(String s) {
2546         ArrayList<FormatString> al = new ArrayList<>();
2547         Matcher m = fsPattern.matcher(s);
2548         for (int i = 0, len = s.length(); i < len; ) {
2549             if (m.find(i)) {
2550                 // Anything between the start of the string and the beginning
2551                 // of the format specifier is either fixed text or contains
2552                 // an invalid format string.
2553                 if (m.start() != i) {
2554                     // Make sure we didn't miss any invalid format specifiers
2555                     checkText(s, i, m.start());
2556                     // Assume previous characters were fixed text
2557                     al.add(new FixedString(s.substring(i, m.start())));
2558                 }
2559 
2560                 al.add(new FormatSpecifier(m));
2561                 i = m.end();
2562             } else {
2563                 // No more valid format specifiers.  Check for possible invalid
2564                 // format specifiers.
2565                 checkText(s, i, len);
2566                 // The rest of the string is fixed text
2567                 al.add(new FixedString(s.substring(i)));
2568                 break;
2569             }
2570         }
2571         return al.toArray(new FormatString[al.size()]);
2572     }
2573 
2574     private static void checkText(String s, int start, int end) {
2575         for (int i = start; i < end; i++) {
2576             // Any '%' found in the region starts an invalid format specifier.
2577             if (s.charAt(i) == '%') {
2578                 char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2579                 throw new UnknownFormatConversionException(String.valueOf(c));
2580             }
2581         }
2582     }
2583 
2584     private interface FormatString {
2585         int index();
2586         void print(Object arg, Locale l) throws IOException;
2587         String toString();
2588     }
2589 
2590     private class FixedString implements FormatString {
2591         private String s;
2592         FixedString(String s) { this.s = s; }
2593         public int index() { return -2; }
2594         public void print(Object arg, Locale l)
2595             throws IOException { a.append(s); }
2596         public String toString() { return s; }
2597     }
2598 
2599     /**
2600      * Enum for {@code BigDecimal} formatting.
2601      */
2602     public enum BigDecimalLayoutForm {
2603         /**
2604          * Format the {@code BigDecimal} in computerized scientific notation.
2605          */
2606         SCIENTIFIC,
2607 
2608         /**
2609          * Format the {@code BigDecimal} as a decimal number.
2610          */
2611         DECIMAL_FLOAT
2612     };
2613 
2614     private class FormatSpecifier implements FormatString {
2615         private int index = -1;
2616         private Flags f = Flags.NONE;
2617         private int width;
2618         private int precision;
2619         private boolean dt = false;
2620         private char c;
2621 
2622         private int index(String s) {
2623             if (s != null) {
2624                 try {
2625                     index = Integer.parseInt(s.substring(0, s.length() - 1));
2626                 } catch (NumberFormatException x) {
2627                     assert(false);
2628                 }
2629             } else {
2630                 index = 0;
2631             }
2632             return index;
2633         }
2634 
2635         public int index() {
2636             return index;
2637         }
2638 
2639         private Flags flags(String s) {
2640             f = Flags.parse(s);
2641             if (f.contains(Flags.PREVIOUS))
2642                 index = -1;
2643             return f;
2644         }
2645 
2646         Flags flags() {
2647             return f;
2648         }
2649 
2650         private int width(String s) {
2651             width = -1;
2652             if (s != null) {
2653                 try {
2654                     width  = Integer.parseInt(s);
2655                     if (width < 0)
2656                         throw new IllegalFormatWidthException(width);
2657                 } catch (NumberFormatException x) {
2658                     assert(false);
2659                 }
2660             }
2661             return width;
2662         }
2663 
2664         int width() {
2665             return width;
2666         }
2667 
2668         private int precision(String s) {
2669             precision = -1;
2670             if (s != null) {
2671                 try {
2672                     // remove the '.'
2673                     precision = Integer.parseInt(s.substring(1));
2674                     if (precision < 0)
2675                         throw new IllegalFormatPrecisionException(precision);
2676                 } catch (NumberFormatException x) {
2677                     assert(false);
2678                 }
2679             }
2680             return precision;
2681         }
2682 
2683         int precision() {
2684             return precision;
2685         }
2686 
2687         private char conversion(String s) {
2688             c = s.charAt(0);
2689             if (!dt) {
2690                 if (!Conversion.isValid(c))
2691                     throw new UnknownFormatConversionException(String.valueOf(c));
2692                 if (Character.isUpperCase(c))
2693                     f.add(Flags.UPPERCASE);
2694                 c = Character.toLowerCase(c);
2695                 if (Conversion.isText(c))
2696                     index = -2;
2697             }
2698             return c;
2699         }
2700 
2701         private char conversion() {
2702             return c;
2703         }
2704 
2705         FormatSpecifier(Matcher m) {
2706             int idx = 1;
2707 
2708             index(m.group(idx++));
2709             flags(m.group(idx++));
2710             width(m.group(idx++));
2711             precision(m.group(idx++));
2712 
2713             String tT = m.group(idx++);
2714             if (tT != null) {
2715                 dt = true;
2716                 if (tT.equals("T"))
2717                     f.add(Flags.UPPERCASE);
2718             }
2719 
2720             conversion(m.group(idx));
2721 
2722             if (dt)
2723                 checkDateTime();
2724             else if (Conversion.isGeneral(c))
2725                 checkGeneral();
2726             else if (Conversion.isCharacter(c))
2727                 checkCharacter();
2728             else if (Conversion.isInteger(c))
2729                 checkInteger();
2730             else if (Conversion.isFloat(c))
2731                 checkFloat();
2732             else if (Conversion.isText(c))
2733                 checkText();
2734             else
2735                 throw new UnknownFormatConversionException(String.valueOf(c));
2736         }
2737 
2738         public void print(Object arg, Locale l) throws IOException {
2739             if (dt) {
2740                 printDateTime(arg, l);
2741                 return;
2742             }
2743             switch(c) {
2744             case Conversion.DECIMAL_INTEGER:
2745             case Conversion.OCTAL_INTEGER:
2746             case Conversion.HEXADECIMAL_INTEGER:
2747                 printInteger(arg, l);
2748                 break;
2749             case Conversion.SCIENTIFIC:
2750             case Conversion.GENERAL:
2751             case Conversion.DECIMAL_FLOAT:
2752             case Conversion.HEXADECIMAL_FLOAT:
2753                 printFloat(arg, l);
2754                 break;
2755             case Conversion.CHARACTER:
2756             case Conversion.CHARACTER_UPPER:
2757                 printCharacter(arg);
2758                 break;
2759             case Conversion.BOOLEAN:
2760                 printBoolean(arg);
2761                 break;
2762             case Conversion.STRING:
2763                 printString(arg, l);
2764                 break;
2765             case Conversion.HASHCODE:
2766                 printHashCode(arg);
2767                 break;
2768             case Conversion.LINE_SEPARATOR:
2769                 a.append(System.lineSeparator());
2770                 break;
2771             case Conversion.PERCENT_SIGN:
2772                 a.append('%');
2773                 break;
2774             default:
2775                 assert false;
2776             }
2777         }
2778 
2779         private void printInteger(Object arg, Locale l) throws IOException {
2780             if (arg == null)
2781                 print("null");
2782             else if (arg instanceof Byte)
2783                 print(((Byte)arg).byteValue(), l);
2784             else if (arg instanceof Short)
2785                 print(((Short)arg).shortValue(), l);
2786             else if (arg instanceof Integer)
2787                 print(((Integer)arg).intValue(), l);
2788             else if (arg instanceof Long)
2789                 print(((Long)arg).longValue(), l);
2790             else if (arg instanceof BigInteger)
2791                 print(((BigInteger)arg), l);
2792             else
2793                 failConversion(c, arg);
2794         }
2795 
2796         private void printFloat(Object arg, Locale l) throws IOException {
2797             if (arg == null)
2798                 print("null");
2799             else if (arg instanceof Float)
2800                 print(((Float)arg).floatValue(), l);
2801             else if (arg instanceof Double)
2802                 print(((Double)arg).doubleValue(), l);
2803             else if (arg instanceof BigDecimal)
2804                 print(((BigDecimal)arg), l);
2805             else
2806                 failConversion(c, arg);
2807         }
2808 
2809         private void printDateTime(Object arg, Locale l) throws IOException {
2810             if (arg == null) {
2811                 print("null");
2812                 return;
2813             }
2814             Calendar cal = null;
2815 
2816             // Instead of Calendar.setLenient(true), perhaps we should
2817             // wrap the IllegalArgumentException that might be thrown?
2818             if (arg instanceof Long) {
2819                 // Note that the following method uses an instance of the
2820                 // default time zone (TimeZone.getDefaultRef().
2821                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2822                 cal.setTimeInMillis((Long)arg);
2823             } else if (arg instanceof Date) {
2824                 // Note that the following method uses an instance of the
2825                 // default time zone (TimeZone.getDefaultRef().
2826                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2827                 cal.setTime((Date)arg);
2828             } else if (arg instanceof Calendar) {
2829                 cal = (Calendar) ((Calendar) arg).clone();
2830                 cal.setLenient(true);
2831             } else if (arg instanceof TemporalAccessor) {
2832                 print((TemporalAccessor) arg, c, l);
2833                 return;
2834             } else {
2835                 failConversion(c, arg);
2836             }
2837             // Use the provided locale so that invocations of
2838             // localizedMagnitude() use optimizations for null.
2839             print(cal, c, l);
2840         }
2841 
2842         private void printCharacter(Object arg) throws IOException {
2843             if (arg == null) {
2844                 print("null");
2845                 return;
2846             }
2847             String s = null;
2848             if (arg instanceof Character) {
2849                 s = ((Character)arg).toString();
2850             } else if (arg instanceof Byte) {
2851                 byte i = ((Byte)arg).byteValue();
2852                 if (Character.isValidCodePoint(i))
2853                     s = new String(Character.toChars(i));
2854                 else
2855                     throw new IllegalFormatCodePointException(i);
2856             } else if (arg instanceof Short) {
2857                 short i = ((Short)arg).shortValue();
2858                 if (Character.isValidCodePoint(i))
2859                     s = new String(Character.toChars(i));
2860                 else
2861                     throw new IllegalFormatCodePointException(i);
2862             } else if (arg instanceof Integer) {
2863                 int i = ((Integer)arg).intValue();
2864                 if (Character.isValidCodePoint(i))
2865                     s = new String(Character.toChars(i));
2866                 else
2867                     throw new IllegalFormatCodePointException(i);
2868             } else {
2869                 failConversion(c, arg);
2870             }
2871             print(s);
2872         }
2873 
2874         private void printString(Object arg, Locale l) throws IOException {
2875             if (arg instanceof Formattable) {
2876                 Formatter fmt = Formatter.this;
2877                 if (fmt.locale() != l)
2878                     fmt = new Formatter(fmt.out(), l);
2879                 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2880             } else {
2881                 if (f.contains(Flags.ALTERNATE))
2882                     failMismatch(Flags.ALTERNATE, 's');
2883                 if (arg == null)
2884                     print("null");
2885                 else
2886                     print(arg.toString());
2887             }
2888         }
2889 
2890         private void printBoolean(Object arg) throws IOException {
2891             String s;
2892             if (arg != null)
2893                 s = ((arg instanceof Boolean)
2894                      ? ((Boolean)arg).toString()
2895                      : Boolean.toString(true));
2896             else
2897                 s = Boolean.toString(false);
2898             print(s);
2899         }
2900 
2901         private void printHashCode(Object arg) throws IOException {
2902             String s = (arg == null
2903                         ? "null"
2904                         : Integer.toHexString(arg.hashCode()));
2905             print(s);
2906         }
2907 
2908         private void print(String s) throws IOException {
2909             if (precision != -1 && precision < s.length())
2910                 s = s.substring(0, precision);
2911             if (f.contains(Flags.UPPERCASE))
2912                 s = s.toUpperCase();
2913             a.append(justify(s));
2914         }
2915 
2916         private String justify(String s) {
2917             if (width == -1)
2918                 return s;
2919             StringBuilder sb = new StringBuilder();
2920             boolean pad = f.contains(Flags.LEFT_JUSTIFY);
2921             int sp = width - s.length();
2922             if (!pad)
2923                 for (int i = 0; i < sp; i++) sb.append(' ');
2924             sb.append(s);
2925             if (pad)
2926                 for (int i = 0; i < sp; i++) sb.append(' ');
2927             return sb.toString();
2928         }
2929 
2930         public String toString() {
2931             StringBuilder sb = new StringBuilder("%");
2932             // Flags.UPPERCASE is set internally for legal conversions.
2933             Flags dupf = f.dup().remove(Flags.UPPERCASE);
2934             sb.append(dupf.toString());
2935             if (index > 0)
2936                 sb.append(index).append('$');
2937             if (width != -1)
2938                 sb.append(width);
2939             if (precision != -1)
2940                 sb.append('.').append(precision);
2941             if (dt)
2942                 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
2943             sb.append(f.contains(Flags.UPPERCASE)
2944                       ? Character.toUpperCase(c) : c);
2945             return sb.toString();
2946         }
2947 
2948         private void checkGeneral() {
2949             if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
2950                 && f.contains(Flags.ALTERNATE))
2951                 failMismatch(Flags.ALTERNATE, c);
2952             // '-' requires a width
2953             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2954                 throw new MissingFormatWidthException(toString());
2955             checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
2956                           Flags.GROUP, Flags.PARENTHESES);
2957         }
2958 
2959         private void checkDateTime() {
2960             if (precision != -1)
2961                 throw new IllegalFormatPrecisionException(precision);
2962             if (!DateTime.isValid(c))
2963                 throw new UnknownFormatConversionException("t" + c);
2964             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2965                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2966             // '-' requires a width
2967             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2968                 throw new MissingFormatWidthException(toString());
2969         }
2970 
2971         private void checkCharacter() {
2972             if (precision != -1)
2973                 throw new IllegalFormatPrecisionException(precision);
2974             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2975                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2976             // '-' requires a width
2977             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2978                 throw new MissingFormatWidthException(toString());
2979         }
2980 
2981         private void checkInteger() {
2982             checkNumeric();
2983             if (precision != -1)
2984                 throw new IllegalFormatPrecisionException(precision);
2985 
2986             if (c == Conversion.DECIMAL_INTEGER)
2987                 checkBadFlags(Flags.ALTERNATE);
2988             else if (c == Conversion.OCTAL_INTEGER)
2989                 checkBadFlags(Flags.GROUP);
2990             else
2991                 checkBadFlags(Flags.GROUP);
2992         }
2993 
2994         private void checkBadFlags(Flags ... badFlags) {
2995             for (int i = 0; i < badFlags.length; i++)
2996                 if (f.contains(badFlags[i]))
2997                     failMismatch(badFlags[i], c);
2998         }
2999 
3000         private void checkFloat() {
3001             checkNumeric();
3002             if (c == Conversion.DECIMAL_FLOAT) {
3003             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3004                 checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3005             } else if (c == Conversion.SCIENTIFIC) {
3006                 checkBadFlags(Flags.GROUP);
3007             } else if (c == Conversion.GENERAL) {
3008                 checkBadFlags(Flags.ALTERNATE);
3009             }
3010         }
3011 
3012         private void checkNumeric() {
3013             if (width != -1 && width < 0)
3014                 throw new IllegalFormatWidthException(width);
3015 
3016             if (precision != -1 && precision < 0)
3017                 throw new IllegalFormatPrecisionException(precision);
3018 
3019             // '-' and '0' require a width
3020             if (width == -1
3021                 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3022                 throw new MissingFormatWidthException(toString());
3023 
3024             // bad combination
3025             if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3026                 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3027                 throw new IllegalFormatFlagsException(f.toString());
3028         }
3029 
3030         private void checkText() {
3031             if (precision != -1)
3032                 throw new IllegalFormatPrecisionException(precision);
3033             switch (c) {
3034             case Conversion.PERCENT_SIGN:
3035                 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3036                     && f.valueOf() != Flags.NONE.valueOf())
3037                     throw new IllegalFormatFlagsException(f.toString());
3038                 // '-' requires a width
3039                 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3040                     throw new MissingFormatWidthException(toString());
3041                 break;
3042             case Conversion.LINE_SEPARATOR:
3043                 if (width != -1)
3044                     throw new IllegalFormatWidthException(width);
3045                 if (f.valueOf() != Flags.NONE.valueOf())
3046                     throw new IllegalFormatFlagsException(f.toString());
3047                 break;
3048             default:
3049                 assert false;
3050             }
3051         }
3052 
3053         private void print(byte value, Locale l) throws IOException {
3054             long v = value;
3055             if (value < 0
3056                 && (c == Conversion.OCTAL_INTEGER
3057                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3058                 v += (1L << 8);
3059                 assert v >= 0 : v;
3060             }
3061             print(v, l);
3062         }
3063 
3064         private void print(short value, Locale l) throws IOException {
3065             long v = value;
3066             if (value < 0
3067                 && (c == Conversion.OCTAL_INTEGER
3068                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3069                 v += (1L << 16);
3070                 assert v >= 0 : v;
3071             }
3072             print(v, l);
3073         }
3074 
3075         private void print(int value, Locale l) throws IOException {
3076             long v = value;
3077             if (value < 0
3078                 && (c == Conversion.OCTAL_INTEGER
3079                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3080                 v += (1L << 32);
3081                 assert v >= 0 : v;
3082             }
3083             print(v, l);
3084         }
3085 
3086         private void print(long value, Locale l) throws IOException {
3087 
3088             StringBuilder sb = new StringBuilder();
3089 
3090             if (c == Conversion.DECIMAL_INTEGER) {
3091                 boolean neg = value < 0;
3092                 char[] va;
3093                 if (value < 0)
3094                     va = Long.toString(value, 10).substring(1).toCharArray();
3095                 else
3096                     va = Long.toString(value, 10).toCharArray();
3097 
3098                 // leading sign indicator
3099                 leadingSign(sb, neg);
3100 
3101                 // the value
3102                 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3103 
3104                 // trailing sign indicator
3105                 trailingSign(sb, neg);
3106             } else if (c == Conversion.OCTAL_INTEGER) {
3107                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3108                               Flags.PLUS);
3109                 String s = Long.toOctalString(value);
3110                 int len = (f.contains(Flags.ALTERNATE)
3111                            ? s.length() + 1
3112                            : s.length());
3113 
3114                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3115                 if (f.contains(Flags.ALTERNATE))
3116                     sb.append('0');
3117                 if (f.contains(Flags.ZERO_PAD))
3118                     for (int i = 0; i < width - len; i++) sb.append('0');
3119                 sb.append(s);
3120             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3121                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3122                               Flags.PLUS);
3123                 String s = Long.toHexString(value);
3124                 int len = (f.contains(Flags.ALTERNATE)
3125                            ? s.length() + 2
3126                            : s.length());
3127 
3128                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3129                 if (f.contains(Flags.ALTERNATE))
3130                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3131                 if (f.contains(Flags.ZERO_PAD))
3132                     for (int i = 0; i < width - len; i++) sb.append('0');
3133                 if (f.contains(Flags.UPPERCASE))
3134                     s = s.toUpperCase();
3135                 sb.append(s);
3136             }
3137 
3138             // justify based on width
3139             a.append(justify(sb.toString()));
3140         }
3141 
3142         // neg := val < 0
3143         private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3144             if (!neg) {
3145                 if (f.contains(Flags.PLUS)) {
3146                     sb.append('+');
3147                 } else if (f.contains(Flags.LEADING_SPACE)) {
3148                     sb.append(' ');
3149                 }
3150             } else {
3151                 if (f.contains(Flags.PARENTHESES))
3152                     sb.append('(');
3153                 else
3154                     sb.append('-');
3155             }
3156             return sb;
3157         }
3158 
3159         // neg := val < 0
3160         private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3161             if (neg && f.contains(Flags.PARENTHESES))
3162                 sb.append(')');
3163             return sb;
3164         }
3165 
3166         private void print(BigInteger value, Locale l) throws IOException {
3167             StringBuilder sb = new StringBuilder();
3168             boolean neg = value.signum() == -1;
3169             BigInteger v = value.abs();
3170 
3171             // leading sign indicator
3172             leadingSign(sb, neg);
3173 
3174             // the value
3175             if (c == Conversion.DECIMAL_INTEGER) {
3176                 char[] va = v.toString().toCharArray();
3177                 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3178             } else if (c == Conversion.OCTAL_INTEGER) {
3179                 String s = v.toString(8);
3180 
3181                 int len = s.length() + sb.length();
3182                 if (neg && f.contains(Flags.PARENTHESES))
3183                     len++;
3184 
3185                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3186                 if (f.contains(Flags.ALTERNATE)) {
3187                     len++;
3188                     sb.append('0');
3189                 }
3190                 if (f.contains(Flags.ZERO_PAD)) {
3191                     for (int i = 0; i < width - len; i++)
3192                         sb.append('0');
3193                 }
3194                 sb.append(s);
3195             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3196                 String s = v.toString(16);
3197 
3198                 int len = s.length() + sb.length();
3199                 if (neg && f.contains(Flags.PARENTHESES))
3200                     len++;
3201 
3202                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3203                 if (f.contains(Flags.ALTERNATE)) {
3204                     len += 2;
3205                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3206                 }
3207                 if (f.contains(Flags.ZERO_PAD))
3208                     for (int i = 0; i < width - len; i++)
3209                         sb.append('0');
3210                 if (f.contains(Flags.UPPERCASE))
3211                     s = s.toUpperCase();
3212                 sb.append(s);
3213             }
3214 
3215             // trailing sign indicator
3216             trailingSign(sb, (value.signum() == -1));
3217 
3218             // justify based on width
3219             a.append(justify(sb.toString()));
3220         }
3221 
3222         private void print(float value, Locale l) throws IOException {
3223             print((double) value, l);
3224         }
3225 
3226         private void print(double value, Locale l) throws IOException {
3227             StringBuilder sb = new StringBuilder();
3228             boolean neg = Double.compare(value, 0.0) == -1;
3229 
3230             if (!Double.isNaN(value)) {
3231                 double v = Math.abs(value);
3232 
3233                 // leading sign indicator
3234                 leadingSign(sb, neg);
3235 
3236                 // the value
3237                 if (!Double.isInfinite(v))
3238                     print(sb, v, l, f, c, precision, neg);
3239                 else
3240                     sb.append(f.contains(Flags.UPPERCASE)
3241                               ? "INFINITY" : "Infinity");
3242 
3243                 // trailing sign indicator
3244                 trailingSign(sb, neg);
3245             } else {
3246                 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3247             }
3248 
3249             // justify based on width
3250             a.append(justify(sb.toString()));
3251         }
3252 
3253         // !Double.isInfinite(value) && !Double.isNaN(value)
3254         private void print(StringBuilder sb, double value, Locale l,
3255                            Flags f, char c, int precision, boolean neg)
3256             throws IOException
3257         {
3258             if (c == Conversion.SCIENTIFIC) {
3259                 // Create a new FormattedFloatingDecimal with the desired
3260                 // precision.
3261                 int prec = (precision == -1 ? 6 : precision);
3262 
3263                 FormattedFloatingDecimal fd
3264                         = FormattedFloatingDecimal.valueOf(value, prec,
3265                           FormattedFloatingDecimal.Form.SCIENTIFIC);
3266 
3267                 char[] mant = addZeros(fd.getMantissa(), prec);
3268 
3269                 // If the precision is zero and the '#' flag is set, add the
3270                 // requested decimal point.
3271                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3272                     mant = addDot(mant);
3273 
3274                 char[] exp = (value == 0.0)
3275                     ? new char[] {'+','0','0'} : fd.getExponent();
3276 
3277                 int newW = width;
3278                 if (width != -1)
3279                     newW = adjustWidth(width - exp.length - 1, f, neg);
3280                 localizedMagnitude(sb, mant, f, newW, l);
3281 
3282                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3283 
3284                 Flags flags = f.dup().remove(Flags.GROUP);
3285                 char sign = exp[0];
3286                 assert(sign == '+' || sign == '-');
3287                 sb.append(sign);
3288 
3289                 char[] tmp = new char[exp.length - 1];
3290                 System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3291                 sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3292             } else if (c == Conversion.DECIMAL_FLOAT) {
3293                 // Create a new FormattedFloatingDecimal with the desired
3294                 // precision.
3295                 int prec = (precision == -1 ? 6 : precision);
3296 
3297                 FormattedFloatingDecimal fd
3298                         = FormattedFloatingDecimal.valueOf(value, prec,
3299                           FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3300 
3301                 char[] mant = addZeros(fd.getMantissa(), prec);
3302 
3303                 // If the precision is zero and the '#' flag is set, add the
3304                 // requested decimal point.
3305                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3306                     mant = addDot(mant);
3307 
3308                 int newW = width;
3309                 if (width != -1)
3310                     newW = adjustWidth(width, f, neg);
3311                 localizedMagnitude(sb, mant, f, newW, l);
3312             } else if (c == Conversion.GENERAL) {
3313                 int prec = precision;
3314                 if (precision == -1)
3315                     prec = 6;
3316                 else if (precision == 0)
3317                     prec = 1;
3318 
3319                 char[] exp;
3320                 char[] mant;
3321                 int expRounded;
3322                 if (value == 0.0) {
3323                     exp = null;
3324                     mant = new char[] {'0'};
3325                     expRounded = 0;
3326                 } else {
3327                     FormattedFloatingDecimal fd
3328                         = FormattedFloatingDecimal.valueOf(value, prec,
3329                           FormattedFloatingDecimal.Form.GENERAL);
3330                     exp = fd.getExponent();
3331                     mant = fd.getMantissa();
3332                     expRounded = fd.getExponentRounded();
3333                 }
3334 
3335                 if (exp != null) {
3336                     prec -= 1;
3337                 } else {
3338                     prec -= expRounded + 1;
3339                 }
3340 
3341                 mant = addZeros(mant, prec);
3342                 // If the precision is zero and the '#' flag is set, add the
3343                 // requested decimal point.
3344                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3345                     mant = addDot(mant);
3346 
3347                 int newW = width;
3348                 if (width != -1) {
3349                     if (exp != null)
3350                         newW = adjustWidth(width - exp.length - 1, f, neg);
3351                     else
3352                         newW = adjustWidth(width, f, neg);
3353                 }
3354                 localizedMagnitude(sb, mant, f, newW, l);
3355 
3356                 if (exp != null) {
3357                     sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3358 
3359                     Flags flags = f.dup().remove(Flags.GROUP);
3360                     char sign = exp[0];
3361                     assert(sign == '+' || sign == '-');
3362                     sb.append(sign);
3363 
3364                     char[] tmp = new char[exp.length - 1];
3365                     System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3366                     sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3367                 }
3368             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3369                 int prec = precision;
3370                 if (precision == -1)
3371                     // assume that we want all of the digits
3372                     prec = 0;
3373                 else if (precision == 0)
3374                     prec = 1;
3375 
3376                 String s = hexDouble(value, prec);
3377 
3378                 char[] va;
3379                 boolean upper = f.contains(Flags.UPPERCASE);
3380                 sb.append(upper ? "0X" : "0x");
3381 
3382                 if (f.contains(Flags.ZERO_PAD))
3383                     for (int i = 0; i < width - s.length() - 2; i++)
3384                         sb.append('0');
3385 
3386                 int idx = s.indexOf('p');
3387                 va = s.substring(0, idx).toCharArray();
3388                 if (upper) {
3389                     String tmp = new String(va);
3390                     // don't localize hex
3391                     tmp = tmp.toUpperCase(Locale.US);
3392                     va = tmp.toCharArray();
3393                 }
3394                 sb.append(prec != 0 ? addZeros(va, prec) : va);
3395                 sb.append(upper ? 'P' : 'p');
3396                 sb.append(s.substring(idx+1));
3397             }
3398         }
3399 
3400         // Add zeros to the requested precision.
3401         private char[] addZeros(char[] v, int prec) {
3402             // Look for the dot.  If we don't find one, the we'll need to add
3403             // it before we add the zeros.
3404             int i;
3405             for (i = 0; i < v.length; i++) {
3406                 if (v[i] == '.')
3407                     break;
3408             }
3409             boolean needDot = false;
3410             if (i == v.length) {
3411                 needDot = true;
3412             }
3413 
3414             // Determine existing precision.
3415             int outPrec = v.length - i - (needDot ? 0 : 1);
3416             assert (outPrec <= prec);
3417             if (outPrec == prec)
3418                 return v;
3419 
3420             // Create new array with existing contents.
3421             char[] tmp
3422                 = new char[v.length + prec - outPrec + (needDot ? 1 : 0)];
3423             System.arraycopy(v, 0, tmp, 0, v.length);
3424 
3425             // Add dot if previously determined to be necessary.
3426             int start = v.length;
3427             if (needDot) {
3428                 tmp[v.length] = '.';
3429                 start++;
3430             }
3431 
3432             // Add zeros.
3433             for (int j = start; j < tmp.length; j++)
3434                 tmp[j] = '0';
3435 
3436             return tmp;
3437         }
3438 
3439         // Method assumes that d > 0.
3440         private String hexDouble(double d, int prec) {
3441             // Let Double.toHexString handle simple cases
3442             if(!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13)
3443                 // remove "0x"
3444                 return Double.toHexString(d).substring(2);
3445             else {
3446                 assert(prec >= 1 && prec <= 12);
3447 
3448                 int exponent  = Math.getExponent(d);
3449                 boolean subnormal
3450                     = (exponent == DoubleConsts.MIN_EXPONENT - 1);
3451 
3452                 // If this is subnormal input so normalize (could be faster to
3453                 // do as integer operation).
3454                 if (subnormal) {
3455                     scaleUp = Math.scalb(1.0, 54);
3456                     d *= scaleUp;
3457                     // Calculate the exponent.  This is not just exponent + 54
3458                     // since the former is not the normalized exponent.
3459                     exponent = Math.getExponent(d);
3460                     assert exponent >= DoubleConsts.MIN_EXPONENT &&
3461                         exponent <= DoubleConsts.MAX_EXPONENT: exponent;
3462                 }
3463 
3464                 int precision = 1 + prec*4;
3465                 int shiftDistance
3466                     =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
3467                 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3468 
3469                 long doppel = Double.doubleToLongBits(d);
3470                 // Deterime the number of bits to keep.
3471                 long newSignif
3472                     = (doppel & (DoubleConsts.EXP_BIT_MASK
3473                                  | DoubleConsts.SIGNIF_BIT_MASK))
3474                                      >> shiftDistance;
3475                 // Bits to round away.
3476                 long roundingBits = doppel & ~(~0L << shiftDistance);
3477 
3478                 // To decide how to round, look at the low-order bit of the
3479                 // working significand, the highest order discarded bit (the
3480                 // round bit) and whether any of the lower order discarded bits
3481                 // are nonzero (the sticky bit).
3482 
3483                 boolean leastZero = (newSignif & 0x1L) == 0L;
3484                 boolean round
3485                     = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3486                 boolean sticky  = shiftDistance > 1 &&
3487                     (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3488                 if((leastZero && round && sticky) || (!leastZero && round)) {
3489                     newSignif++;
3490                 }
3491 
3492                 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3493                 newSignif = signBit | (newSignif << shiftDistance);
3494                 double result = Double.longBitsToDouble(newSignif);
3495 
3496                 if (Double.isInfinite(result) ) {
3497                     // Infinite result generated by rounding
3498                     return "1.0p1024";
3499                 } else {
3500                     String res = Double.toHexString(result).substring(2);
3501                     if (!subnormal)
3502                         return res;
3503                     else {
3504                         // Create a normalized subnormal string.
3505                         int idx = res.indexOf('p');
3506                         if (idx == -1) {
3507                             // No 'p' character in hex string.
3508                             assert false;
3509                             return null;
3510                         } else {
3511                             // Get exponent and append at the end.
3512                             String exp = res.substring(idx + 1);
3513                             int iexp = Integer.parseInt(exp) -54;
3514                             return res.substring(0, idx) + "p"
3515                                 + Integer.toString(iexp);
3516                         }
3517                     }
3518                 }
3519             }
3520         }
3521 
3522         private void print(BigDecimal value, Locale l) throws IOException {
3523             if (c == Conversion.HEXADECIMAL_FLOAT)
3524                 failConversion(c, value);
3525             StringBuilder sb = new StringBuilder();
3526             boolean neg = value.signum() == -1;
3527             BigDecimal v = value.abs();
3528             // leading sign indicator
3529             leadingSign(sb, neg);
3530 
3531             // the value
3532             print(sb, v, l, f, c, precision, neg);
3533 
3534             // trailing sign indicator
3535             trailingSign(sb, neg);
3536 
3537             // justify based on width
3538             a.append(justify(sb.toString()));
3539         }
3540 
3541         // value > 0
3542         private void print(StringBuilder sb, BigDecimal value, Locale l,
3543                            Flags f, char c, int precision, boolean neg)
3544             throws IOException
3545         {
3546             if (c == Conversion.SCIENTIFIC) {
3547                 // Create a new BigDecimal with the desired precision.
3548                 int prec = (precision == -1 ? 6 : precision);
3549                 int scale = value.scale();
3550                 int origPrec = value.precision();
3551                 int nzeros = 0;
3552                 int compPrec;
3553 
3554                 if (prec > origPrec - 1) {
3555                     compPrec = origPrec;
3556                     nzeros = prec - (origPrec - 1);
3557                 } else {
3558                     compPrec = prec + 1;
3559                 }
3560 
3561                 MathContext mc = new MathContext(compPrec);
3562                 BigDecimal v
3563                     = new BigDecimal(value.unscaledValue(), scale, mc);
3564 
3565                 BigDecimalLayout bdl
3566                     = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3567                                            BigDecimalLayoutForm.SCIENTIFIC);
3568 
3569                 char[] mant = bdl.mantissa();
3570 
3571                 // Add a decimal point if necessary.  The mantissa may not
3572                 // contain a decimal point if the scale is zero (the internal
3573                 // representation has no fractional part) or the original
3574                 // precision is one. Append a decimal point if '#' is set or if
3575                 // we require zero padding to get to the requested precision.
3576                 if ((origPrec == 1 || !bdl.hasDot())
3577                     && (nzeros > 0 || (f.contains(Flags.ALTERNATE))))
3578                     mant = addDot(mant);
3579 
3580                 // Add trailing zeros in the case precision is greater than
3581                 // the number of available digits after the decimal separator.
3582                 mant = trailingZeros(mant, nzeros);
3583 
3584                 char[] exp = bdl.exponent();
3585                 int newW = width;
3586                 if (width != -1)
3587                     newW = adjustWidth(width - exp.length - 1, f, neg);
3588                 localizedMagnitude(sb, mant, f, newW, l);
3589 
3590                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3591 
3592                 Flags flags = f.dup().remove(Flags.GROUP);
3593                 char sign = exp[0];
3594                 assert(sign == '+' || sign == '-');
3595                 sb.append(exp[0]);
3596 
3597                 char[] tmp = new char[exp.length - 1];
3598                 System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3599                 sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3600             } else if (c == Conversion.DECIMAL_FLOAT) {
3601                 // Create a new BigDecimal with the desired precision.
3602                 int prec = (precision == -1 ? 6 : precision);
3603                 int scale = value.scale();
3604 
3605                 if (scale > prec) {
3606                     // more "scale" digits than the requested "precision"
3607                     int compPrec = value.precision();
3608                     if (compPrec <= scale) {
3609                         // case of 0.xxxxxx
3610                         value = value.setScale(prec, RoundingMode.HALF_UP);
3611                     } else {
3612                         compPrec -= (scale - prec);
3613                         value = new BigDecimal(value.unscaledValue(),
3614                                                scale,
3615                                                new MathContext(compPrec));
3616                     }
3617                 }
3618                 BigDecimalLayout bdl = new BigDecimalLayout(
3619                                            value.unscaledValue(),
3620                                            value.scale(),
3621                                            BigDecimalLayoutForm.DECIMAL_FLOAT);
3622 
3623                 char mant[] = bdl.mantissa();
3624                 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3625 
3626                 // Add a decimal point if necessary.  The mantissa may not
3627                 // contain a decimal point if the scale is zero (the internal
3628                 // representation has no fractional part).  Append a decimal
3629                 // point if '#' is set or we require zero padding to get to the
3630                 // requested precision.
3631                 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0))
3632                     mant = addDot(bdl.mantissa());
3633 
3634                 // Add trailing zeros if the precision is greater than the
3635                 // number of available digits after the decimal separator.
3636                 mant = trailingZeros(mant, nzeros);
3637 
3638                 localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l);
3639             } else if (c == Conversion.GENERAL) {
3640                 int prec = precision;
3641                 if (precision == -1)
3642                     prec = 6;
3643                 else if (precision == 0)
3644                     prec = 1;
3645 
3646                 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3647                 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3648                 if ((value.equals(BigDecimal.ZERO))
3649                     || ((value.compareTo(tenToTheNegFour) != -1)
3650                         && (value.compareTo(tenToThePrec) == -1))) {
3651 
3652                     int e = - value.scale()
3653                         + (value.unscaledValue().toString().length() - 1);
3654 
3655                     // xxx.yyy
3656                     //   g precision (# sig digits) = #x + #y
3657                     //   f precision = #y
3658                     //   exponent = #x - 1
3659                     // => f precision = g precision - exponent - 1
3660                     // 0.000zzz
3661                     //   g precision (# sig digits) = #z
3662                     //   f precision = #0 (after '.') + #z
3663                     //   exponent = - #0 (after '.') - 1
3664                     // => f precision = g precision - exponent - 1
3665                     prec = prec - e - 1;
3666 
3667                     print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3668                           neg);
3669                 } else {
3670                     print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3671                 }
3672             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3673                 // This conversion isn't supported.  The error should be
3674                 // reported earlier.
3675                 assert false;
3676             }
3677         }
3678 
3679         private class BigDecimalLayout {
3680             private StringBuilder mant;
3681             private StringBuilder exp;
3682             private boolean dot = false;
3683             private int scale;
3684 
3685             public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3686                 layout(intVal, scale, form);
3687             }
3688 
3689             public boolean hasDot() {
3690                 return dot;
3691             }
3692 
3693             public int scale() {
3694                 return scale;
3695             }
3696 
3697             // char[] with canonical string representation
3698             public char[] layoutChars() {
3699                 StringBuilder sb = new StringBuilder(mant);
3700                 if (exp != null) {
3701                     sb.append('E');
3702                     sb.append(exp);
3703                 }
3704                 return toCharArray(sb);
3705             }
3706 
3707             public char[] mantissa() {
3708                 return toCharArray(mant);
3709             }
3710 
3711             // The exponent will be formatted as a sign ('+' or '-') followed
3712             // by the exponent zero-padded to include at least two digits.
3713             public char[] exponent() {
3714                 return toCharArray(exp);
3715             }
3716 
3717             private char[] toCharArray(StringBuilder sb) {
3718                 if (sb == null)
3719                     return null;
3720                 char[] result = new char[sb.length()];
3721                 sb.getChars(0, result.length, result, 0);
3722                 return result;
3723             }
3724 
3725             private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3726                 char coeff[] = intVal.toString().toCharArray();
3727                 this.scale = scale;
3728 
3729                 // Construct a buffer, with sufficient capacity for all cases.
3730                 // If E-notation is needed, length will be: +1 if negative, +1
3731                 // if '.' needed, +2 for "E+", + up to 10 for adjusted
3732                 // exponent.  Otherwise it could have +1 if negative, plus
3733                 // leading "0.00000"
3734                 mant = new StringBuilder(coeff.length + 14);
3735 
3736                 if (scale == 0) {
3737                     int len = coeff.length;
3738                     if (len > 1) {
3739                         mant.append(coeff[0]);
3740                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3741                             mant.append('.');
3742                             dot = true;
3743                             mant.append(coeff, 1, len - 1);
3744                             exp = new StringBuilder("+");
3745                             if (len < 10)
3746                                 exp.append("0").append(len - 1);
3747                             else
3748                                 exp.append(len - 1);
3749                         } else {
3750                             mant.append(coeff, 1, len - 1);
3751                         }
3752                     } else {
3753                         mant.append(coeff);
3754                         if (form == BigDecimalLayoutForm.SCIENTIFIC)
3755                             exp = new StringBuilder("+00");
3756                     }
3757                     return;
3758                 }
3759                 long adjusted = -(long) scale + (coeff.length - 1);
3760                 if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3761                     // count of padding zeros
3762                     int pad = scale - coeff.length;
3763                     if (pad >= 0) {
3764                         // 0.xxx form
3765                         mant.append("0.");
3766                         dot = true;
3767                         for (; pad > 0 ; pad--) mant.append('0');
3768                         mant.append(coeff);
3769                     } else {
3770                         if (-pad < coeff.length) {
3771                             // xx.xx form
3772                             mant.append(coeff, 0, -pad);
3773                             mant.append('.');
3774                             dot = true;
3775                             mant.append(coeff, -pad, scale);
3776                         } else {
3777                             // xx form
3778                             mant.append(coeff, 0, coeff.length);
3779                             for (int i = 0; i < -scale; i++)
3780                                 mant.append('0');
3781                             this.scale = 0;
3782                         }
3783                     }
3784                 } else {
3785                     // x.xxx form
3786                     mant.append(coeff[0]);
3787                     if (coeff.length > 1) {
3788                         mant.append('.');
3789                         dot = true;
3790                         mant.append(coeff, 1, coeff.length-1);
3791                     }
3792                     exp = new StringBuilder();
3793                     if (adjusted != 0) {
3794                         long abs = Math.abs(adjusted);
3795                         // require sign
3796                         exp.append(adjusted < 0 ? '-' : '+');
3797                         if (abs < 10)
3798                             exp.append('0');
3799                         exp.append(abs);
3800                     } else {
3801                         exp.append("+00");
3802                     }
3803                 }
3804             }
3805         }
3806 
3807         private int adjustWidth(int width, Flags f, boolean neg) {
3808             int newW = width;
3809             if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3810                 newW--;
3811             return newW;
3812         }
3813 
3814         // Add a '.' to th mantissa if required
3815         private char[] addDot(char[] mant) {
3816             char[] tmp = mant;
3817             tmp = new char[mant.length + 1];
3818             System.arraycopy(mant, 0, tmp, 0, mant.length);
3819             tmp[tmp.length - 1] = '.';
3820             return tmp;
3821         }
3822 
3823         // Add trailing zeros in the case precision is greater than the number
3824         // of available digits after the decimal separator.
3825         private char[] trailingZeros(char[] mant, int nzeros) {
3826             char[] tmp = mant;
3827             if (nzeros > 0) {
3828                 tmp = new char[mant.length + nzeros];
3829                 System.arraycopy(mant, 0, tmp, 0, mant.length);
3830                 for (int i = mant.length; i < tmp.length; i++)
3831                     tmp[i] = '0';
3832             }
3833             return tmp;
3834         }
3835 
3836         private void print(Calendar t, char c, Locale l)  throws IOException
3837         {
3838             StringBuilder sb = new StringBuilder();
3839             print(sb, t, c, l);
3840 
3841             // justify based on width
3842             String s = justify(sb.toString());
3843             if (f.contains(Flags.UPPERCASE))
3844                 s = s.toUpperCase();
3845 
3846             a.append(s);
3847         }
3848 
3849         private Appendable print(StringBuilder sb, Calendar t, char c,
3850                                  Locale l)
3851             throws IOException
3852         {
3853             if (sb == null)
3854                 sb = new StringBuilder();
3855             switch (c) {
3856             case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3857             case DateTime.HOUR_0:        // 'I' (01 - 12)
3858             case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
3859             case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
3860                 int i = t.get(Calendar.HOUR_OF_DAY);
3861                 if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3862                     i = (i == 0 || i == 12 ? 12 : i % 12);
3863                 Flags flags = (c == DateTime.HOUR_OF_DAY_0
3864                                || c == DateTime.HOUR_0
3865                                ? Flags.ZERO_PAD
3866                                : Flags.NONE);
3867                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3868                 break;
3869             }
3870             case DateTime.MINUTE:      { // 'M' (00 - 59)
3871                 int i = t.get(Calendar.MINUTE);
3872                 Flags flags = Flags.ZERO_PAD;
3873                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3874                 break;
3875             }
3876             case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
3877                 int i = t.get(Calendar.MILLISECOND) * 1000000;
3878                 Flags flags = Flags.ZERO_PAD;
3879                 sb.append(localizedMagnitude(null, i, flags, 9, l));
3880                 break;
3881             }
3882             case DateTime.MILLISECOND: { // 'L' (000 - 999)
3883                 int i = t.get(Calendar.MILLISECOND);
3884                 Flags flags = Flags.ZERO_PAD;
3885                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3886                 break;
3887             }
3888             case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3889                 long i = t.getTimeInMillis();
3890                 Flags flags = Flags.NONE;
3891                 sb.append(localizedMagnitude(null, i, flags, width, l));
3892                 break;
3893             }
3894             case DateTime.AM_PM:       { // 'p' (am or pm)
3895                 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3896                 String[] ampm = { "AM", "PM" };
3897                 if (l != null && l != Locale.US) {
3898                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3899                     ampm = dfs.getAmPmStrings();
3900                 }
3901                 String s = ampm[t.get(Calendar.AM_PM)];
3902                 sb.append(s.toLowerCase(l != null ? l : Locale.US));
3903                 break;
3904             }
3905             case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3906                 long i = t.getTimeInMillis() / 1000;
3907                 Flags flags = Flags.NONE;
3908                 sb.append(localizedMagnitude(null, i, flags, width, l));
3909                 break;
3910             }
3911             case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
3912                 int i = t.get(Calendar.SECOND);
3913                 Flags flags = Flags.ZERO_PAD;
3914                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3915                 break;
3916             }
3917             case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3918                 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3919                 boolean neg = i < 0;
3920                 sb.append(neg ? '-' : '+');
3921                 if (neg)
3922                     i = -i;
3923                 int min = i / 60000;
3924                 // combine minute and hour into a single integer
3925                 int offset = (min / 60) * 100 + (min % 60);
3926                 Flags flags = Flags.ZERO_PAD;
3927 
3928                 sb.append(localizedMagnitude(null, offset, flags, 4, l));
3929                 break;
3930             }
3931             case DateTime.ZONE:        { // 'Z' (symbol)
3932                 TimeZone tz = t.getTimeZone();
3933                 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
3934                                            TimeZone.SHORT,
3935                                             (l == null) ? Locale.US : l));
3936                 break;
3937             }
3938 
3939             // Date
3940             case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
3941             case DateTime.NAME_OF_DAY:          { // 'A'
3942                 int i = t.get(Calendar.DAY_OF_WEEK);
3943                 Locale lt = ((l == null) ? Locale.US : l);
3944                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3945                 if (c == DateTime.NAME_OF_DAY)
3946                     sb.append(dfs.getWeekdays()[i]);
3947                 else
3948                     sb.append(dfs.getShortWeekdays()[i]);
3949                 break;
3950             }
3951             case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
3952             case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
3953             case DateTime.NAME_OF_MONTH:        { // 'B'
3954                 int i = t.get(Calendar.MONTH);
3955                 Locale lt = ((l == null) ? Locale.US : l);
3956                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3957                 if (c == DateTime.NAME_OF_MONTH)
3958                     sb.append(dfs.getMonths()[i]);
3959                 else
3960                     sb.append(dfs.getShortMonths()[i]);
3961                 break;
3962             }
3963             case DateTime.CENTURY:                // 'C' (00 - 99)
3964             case DateTime.YEAR_2:                 // 'y' (00 - 99)
3965             case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
3966                 int i = t.get(Calendar.YEAR);
3967                 int size = 2;
3968                 switch (c) {
3969                 case DateTime.CENTURY:
3970                     i /= 100;
3971                     break;
3972                 case DateTime.YEAR_2:
3973                     i %= 100;
3974                     break;
3975                 case DateTime.YEAR_4:
3976                     size = 4;
3977                     break;
3978                 }
3979                 Flags flags = Flags.ZERO_PAD;
3980                 sb.append(localizedMagnitude(null, i, flags, size, l));
3981                 break;
3982             }
3983             case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
3984             case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
3985                 int i = t.get(Calendar.DATE);
3986                 Flags flags = (c == DateTime.DAY_OF_MONTH_0
3987                                ? Flags.ZERO_PAD
3988                                : Flags.NONE);
3989                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3990                 break;
3991             }
3992             case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
3993                 int i = t.get(Calendar.DAY_OF_YEAR);
3994                 Flags flags = Flags.ZERO_PAD;
3995                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3996                 break;
3997             }
3998             case DateTime.MONTH:                { // 'm' (01 - 12)
3999                 int i = t.get(Calendar.MONTH) + 1;
4000                 Flags flags = Flags.ZERO_PAD;
4001                 sb.append(localizedMagnitude(null, i, flags, 2, l));
4002                 break;
4003             }
4004 
4005             // Composites
4006             case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4007             case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4008                 char sep = ':';
4009                 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4010                 print(sb, t, DateTime.MINUTE, l);
4011                 if (c == DateTime.TIME) {
4012                     sb.append(sep);
4013                     print(sb, t, DateTime.SECOND, l);
4014                 }
4015                 break;
4016             }
4017             case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4018                 char sep = ':';
4019                 print(sb, t, DateTime.HOUR_0, l).append(sep);
4020                 print(sb, t, DateTime.MINUTE, l).append(sep);
4021                 print(sb, t, DateTime.SECOND, l).append(' ');
4022                 // this may be in wrong place for some locales
4023                 StringBuilder tsb = new StringBuilder();
4024                 print(tsb, t, DateTime.AM_PM, l);
4025                 sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4026                 break;
4027             }
4028             case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4029                 char sep = ' ';
4030                 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4031                 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4032                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4033                 print(sb, t, DateTime.TIME, l).append(sep);
4034                 print(sb, t, DateTime.ZONE, l).append(sep);
4035                 print(sb, t, DateTime.YEAR_4, l);
4036                 break;
4037             }
4038             case DateTime.DATE:            { // 'D' (mm/dd/yy)
4039                 char sep = '/';
4040                 print(sb, t, DateTime.MONTH, l).append(sep);
4041                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4042                 print(sb, t, DateTime.YEAR_2, l);
4043                 break;
4044             }
4045             case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4046                 char sep = '-';
4047                 print(sb, t, DateTime.YEAR_4, l).append(sep);
4048                 print(sb, t, DateTime.MONTH, l).append(sep);
4049                 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4050                 break;
4051             }
4052             default:
4053                 assert false;
4054             }
4055             return sb;
4056         }
4057 
4058         private void print(TemporalAccessor t, char c, Locale l)  throws IOException {
4059             StringBuilder sb = new StringBuilder();
4060             print(sb, t, c, l);
4061             // justify based on width
4062             String s = justify(sb.toString());
4063             if (f.contains(Flags.UPPERCASE))
4064                 s = s.toUpperCase();
4065             a.append(s);
4066         }
4067 
4068         private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
4069                                  Locale l) throws IOException {
4070             if (sb == null)
4071                 sb = new StringBuilder();
4072             try {
4073                 switch (c) {
4074                 case DateTime.HOUR_OF_DAY_0: {  // 'H' (00 - 23)
4075                     int i = t.get(ChronoField.HOUR_OF_DAY);
4076                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4077                     break;
4078                 }
4079                 case DateTime.HOUR_OF_DAY: {   // 'k' (0 - 23) -- like H
4080                     int i = t.get(ChronoField.HOUR_OF_DAY);
4081                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4082                     break;
4083                 }
4084                 case DateTime.HOUR_0:      {  // 'I' (01 - 12)
4085                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4086                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4087                     break;
4088                 }
4089                 case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
4090                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4091                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4092                     break;
4093                 }
4094                 case DateTime.MINUTE:      { // 'M' (00 - 59)
4095                     int i = t.get(ChronoField.MINUTE_OF_HOUR);
4096                     Flags flags = Flags.ZERO_PAD;
4097                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4098                     break;
4099                 }
4100                 case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
4101                     int i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
4102                     Flags flags = Flags.ZERO_PAD;
4103                     sb.append(localizedMagnitude(null, i, flags, 9, l));
4104                     break;
4105                 }
4106                 case DateTime.MILLISECOND: { // 'L' (000 - 999)
4107                     int i = t.get(ChronoField.MILLI_OF_SECOND);
4108                     Flags flags = Flags.ZERO_PAD;
4109                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4110                     break;
4111                 }
4112                 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4113                     long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
4114                              t.getLong(ChronoField.MILLI_OF_SECOND);
4115                     Flags flags = Flags.NONE;
4116                     sb.append(localizedMagnitude(null, i, flags, width, l));
4117                     break;
4118                 }
4119                 case DateTime.AM_PM:       { // 'p' (am or pm)
4120                     // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4121                     String[] ampm = { "AM", "PM" };
4122                     if (l != null && l != Locale.US) {
4123                         DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4124                         ampm = dfs.getAmPmStrings();
4125                     }
4126                     String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
4127                     sb.append(s.toLowerCase(l != null ? l : Locale.US));
4128                     break;
4129                 }
4130                 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4131                     long i = t.getLong(ChronoField.INSTANT_SECONDS);
4132                     Flags flags = Flags.NONE;
4133                     sb.append(localizedMagnitude(null, i, flags, width, l));
4134                     break;
4135                 }
4136                 case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
4137                     int i = t.get(ChronoField.SECOND_OF_MINUTE);
4138                     Flags flags = Flags.ZERO_PAD;
4139                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4140                     break;
4141                 }
4142                 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4143                     int i = t.get(ChronoField.OFFSET_SECONDS);
4144                     boolean neg = i < 0;
4145                     sb.append(neg ? '-' : '+');
4146                     if (neg)
4147                         i = -i;
4148                     int min = i / 60;
4149                     // combine minute and hour into a single integer
4150                     int offset = (min / 60) * 100 + (min % 60);
4151                     Flags flags = Flags.ZERO_PAD;
4152                     sb.append(localizedMagnitude(null, offset, flags, 4, l));
4153                     break;
4154                 }
4155                 case DateTime.ZONE:        { // 'Z' (symbol)
4156                     ZoneId zid = t.query(TemporalQueries.zone());
4157                     if (zid == null) {
4158                         throw new IllegalFormatConversionException(c, t.getClass());
4159                     }
4160                     if (!(zid instanceof ZoneOffset) &&
4161                         t.isSupported(ChronoField.INSTANT_SECONDS)) {
4162                         Instant instant = Instant.from(t);
4163                         sb.append(TimeZone.getTimeZone(zid.getId())
4164                                           .getDisplayName(zid.getRules().isDaylightSavings(instant),
4165                                                           TimeZone.SHORT,
4166                                                           (l == null) ? Locale.US : l));
4167                         break;
4168                     }
4169                     sb.append(zid.getId());
4170                     break;
4171                 }
4172                 // Date
4173                 case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
4174                 case DateTime.NAME_OF_DAY:          { // 'A'
4175                     int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
4176                     Locale lt = ((l == null) ? Locale.US : l);
4177                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4178                     if (c == DateTime.NAME_OF_DAY)
4179                         sb.append(dfs.getWeekdays()[i]);
4180                     else
4181                         sb.append(dfs.getShortWeekdays()[i]);
4182                     break;
4183                 }
4184                 case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
4185                 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4186                 case DateTime.NAME_OF_MONTH:        { // 'B'
4187                     int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
4188                     Locale lt = ((l == null) ? Locale.US : l);
4189                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4190                     if (c == DateTime.NAME_OF_MONTH)
4191                         sb.append(dfs.getMonths()[i]);
4192                     else
4193                         sb.append(dfs.getShortMonths()[i]);
4194                     break;
4195                 }
4196                 case DateTime.CENTURY:                // 'C' (00 - 99)
4197                 case DateTime.YEAR_2:                 // 'y' (00 - 99)
4198                 case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
4199                     int i = t.get(ChronoField.YEAR_OF_ERA);
4200                     int size = 2;
4201                     switch (c) {
4202                     case DateTime.CENTURY:
4203                         i /= 100;
4204                         break;
4205                     case DateTime.YEAR_2:
4206                         i %= 100;
4207                         break;
4208                     case DateTime.YEAR_4:
4209                         size = 4;
4210                         break;
4211                     }
4212                     Flags flags = Flags.ZERO_PAD;
4213                     sb.append(localizedMagnitude(null, i, flags, size, l));
4214                     break;
4215                 }
4216                 case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4217                 case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4218                     int i = t.get(ChronoField.DAY_OF_MONTH);
4219                     Flags flags = (c == DateTime.DAY_OF_MONTH_0
4220                                    ? Flags.ZERO_PAD
4221                                    : Flags.NONE);
4222                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4223                     break;
4224                 }
4225                 case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4226                     int i = t.get(ChronoField.DAY_OF_YEAR);
4227                     Flags flags = Flags.ZERO_PAD;
4228                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4229                     break;
4230                 }
4231                 case DateTime.MONTH:                { // 'm' (01 - 12)
4232                     int i = t.get(ChronoField.MONTH_OF_YEAR);
4233                     Flags flags = Flags.ZERO_PAD;
4234                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4235                     break;
4236                 }
4237 
4238                 // Composites
4239                 case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4240                 case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4241                     char sep = ':';
4242                     print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4243                     print(sb, t, DateTime.MINUTE, l);
4244                     if (c == DateTime.TIME) {
4245                         sb.append(sep);
4246                         print(sb, t, DateTime.SECOND, l);
4247                     }
4248                     break;
4249                 }
4250                 case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4251                     char sep = ':';
4252                     print(sb, t, DateTime.HOUR_0, l).append(sep);
4253                     print(sb, t, DateTime.MINUTE, l).append(sep);
4254                     print(sb, t, DateTime.SECOND, l).append(' ');
4255                     // this may be in wrong place for some locales
4256                     StringBuilder tsb = new StringBuilder();
4257                     print(tsb, t, DateTime.AM_PM, l);
4258                     sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4259                     break;
4260                 }
4261                 case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4262                     char sep = ' ';
4263                     print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4264                     print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4265                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4266                     print(sb, t, DateTime.TIME, l).append(sep);
4267                     print(sb, t, DateTime.ZONE, l).append(sep);
4268                     print(sb, t, DateTime.YEAR_4, l);
4269                     break;
4270                 }
4271                 case DateTime.DATE:            { // 'D' (mm/dd/yy)
4272                     char sep = '/';
4273                     print(sb, t, DateTime.MONTH, l).append(sep);
4274                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4275                     print(sb, t, DateTime.YEAR_2, l);
4276                     break;
4277                 }
4278                 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4279                     char sep = '-';
4280                     print(sb, t, DateTime.YEAR_4, l).append(sep);
4281                     print(sb, t, DateTime.MONTH, l).append(sep);
4282                     print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4283                     break;
4284                 }
4285                 default:
4286                     assert false;
4287                 }
4288             } catch (DateTimeException x) {
4289                 throw new IllegalFormatConversionException(c, t.getClass());
4290             }
4291             return sb;
4292         }
4293 
4294         // -- Methods to support throwing exceptions --
4295 
4296         private void failMismatch(Flags f, char c) {
4297             String fs = f.toString();
4298             throw new FormatFlagsConversionMismatchException(fs, c);
4299         }
4300 
4301         private void failConversion(char c, Object arg) {
4302             throw new IllegalFormatConversionException(c, arg.getClass());
4303         }
4304 
4305         private char getZero(Locale l) {
4306             if ((l != null) &&  !l.equals(locale())) {
4307                 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4308                 return dfs.getZeroDigit();
4309             }
4310             return zero;
4311         }
4312 
4313         private StringBuilder
4314             localizedMagnitude(StringBuilder sb, long value, Flags f,
4315                                int width, Locale l)
4316         {
4317             char[] va = Long.toString(value, 10).toCharArray();
4318             return localizedMagnitude(sb, va, f, width, l);
4319         }
4320 
4321         private StringBuilder
4322             localizedMagnitude(StringBuilder sb, char[] value, Flags f,
4323                                int width, Locale l)
4324         {
4325             if (sb == null)
4326                 sb = new StringBuilder();
4327             int begin = sb.length();
4328 
4329             char zero = getZero(l);
4330 
4331             // determine localized grouping separator and size
4332             char grpSep = '\0';
4333             int  grpSize = -1;
4334             char decSep = '\0';
4335 
4336             int len = value.length;
4337             int dot = len;
4338             for (int j = 0; j < len; j++) {
4339                 if (value[j] == '.') {
4340                     dot = j;
4341                     break;
4342                 }
4343             }
4344 
4345             if (dot < len) {
4346                 if (l == null || l.equals(Locale.US)) {
4347                     decSep  = '.';
4348                 } else {
4349                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4350                     decSep  = dfs.getDecimalSeparator();
4351                 }
4352             }
4353 
4354             if (f.contains(Flags.GROUP)) {
4355                 if (l == null || l.equals(Locale.US)) {
4356                     grpSep = ',';
4357                     grpSize = 3;
4358                 } else {
4359                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4360                     grpSep = dfs.getGroupingSeparator();
4361                     DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4362                     grpSize = df.getGroupingSize();
4363                 }
4364             }
4365 
4366             // localize the digits inserting group separators as necessary
4367             for (int j = 0; j < len; j++) {
4368                 if (j == dot) {
4369                     sb.append(decSep);
4370                     // no more group separators after the decimal separator
4371                     grpSep = '\0';
4372                     continue;
4373                 }
4374 
4375                 char c = value[j];
4376                 sb.append((char) ((c - '0') + zero));
4377                 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1))
4378                     sb.append(grpSep);
4379             }
4380 
4381             // apply zero padding
4382             len = sb.length();
4383             if (width != -1 && f.contains(Flags.ZERO_PAD))
4384                 for (int k = 0; k < width - len; k++)
4385                     sb.insert(begin, zero);
4386 
4387             return sb;
4388         }
4389     }
4390 
4391     private static class Flags {
4392         private int flags;
4393 
4394         static final Flags NONE          = new Flags(0);      // ''
4395 
4396         // duplicate declarations from Formattable.java
4397         static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
4398         static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
4399         static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
4400 
4401         // numerics
4402         static final Flags PLUS          = new Flags(1<<3);   // '+'
4403         static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
4404         static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
4405         static final Flags GROUP         = new Flags(1<<6);   // ','
4406         static final Flags PARENTHESES   = new Flags(1<<7);   // '('
4407 
4408         // indexing
4409         static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
4410 
4411         private Flags(int f) {
4412             flags = f;
4413         }
4414 
4415         public int valueOf() {
4416             return flags;
4417         }
4418 
4419         public boolean contains(Flags f) {
4420             return (flags & f.valueOf()) == f.valueOf();
4421         }
4422 
4423         public Flags dup() {
4424             return new Flags(flags);
4425         }
4426 
4427         private Flags add(Flags f) {
4428             flags |= f.valueOf();
4429             return this;
4430         }
4431 
4432         public Flags remove(Flags f) {
4433             flags &= ~f.valueOf();
4434             return this;
4435         }
4436 
4437         public static Flags parse(String s) {
4438             char[] ca = s.toCharArray();
4439             Flags f = new Flags(0);
4440             for (int i = 0; i < ca.length; i++) {
4441                 Flags v = parse(ca[i]);
4442                 if (f.contains(v))
4443                     throw new DuplicateFormatFlagsException(v.toString());
4444                 f.add(v);
4445             }
4446             return f;
4447         }
4448 
4449         // parse those flags which may be provided by users
4450         private static Flags parse(char c) {
4451             switch (c) {
4452             case '-': return LEFT_JUSTIFY;
4453             case '#': return ALTERNATE;
4454             case '+': return PLUS;
4455             case ' ': return LEADING_SPACE;
4456             case '0': return ZERO_PAD;
4457             case ',': return GROUP;
4458             case '(': return PARENTHESES;
4459             case '<': return PREVIOUS;
4460             default:
4461                 throw new UnknownFormatFlagsException(String.valueOf(c));
4462             }
4463         }
4464 
4465         // Returns a string representation of the current {@code Flags}.
4466         public static String toString(Flags f) {
4467             return f.toString();
4468         }
4469 
4470         public String toString() {
4471             StringBuilder sb = new StringBuilder();
4472             if (contains(LEFT_JUSTIFY))  sb.append('-');
4473             if (contains(UPPERCASE))     sb.append('^');
4474             if (contains(ALTERNATE))     sb.append('#');
4475             if (contains(PLUS))          sb.append('+');
4476             if (contains(LEADING_SPACE)) sb.append(' ');
4477             if (contains(ZERO_PAD))      sb.append('0');
4478             if (contains(GROUP))         sb.append(',');
4479             if (contains(PARENTHESES))   sb.append('(');
4480             if (contains(PREVIOUS))      sb.append('<');
4481             return sb.toString();
4482         }
4483     }
4484 
4485     private static class Conversion {
4486         // Byte, Short, Integer, Long, BigInteger
4487         // (and associated primitives due to autoboxing)
4488         static final char DECIMAL_INTEGER     = 'd';
4489         static final char OCTAL_INTEGER       = 'o';
4490         static final char HEXADECIMAL_INTEGER = 'x';
4491         static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4492 
4493         // Float, Double, BigDecimal
4494         // (and associated primitives due to autoboxing)
4495         static final char SCIENTIFIC          = 'e';
4496         static final char SCIENTIFIC_UPPER    = 'E';
4497         static final char GENERAL             = 'g';
4498         static final char GENERAL_UPPER       = 'G';
4499         static final char DECIMAL_FLOAT       = 'f';
4500         static final char HEXADECIMAL_FLOAT   = 'a';
4501         static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4502 
4503         // Character, Byte, Short, Integer
4504         // (and associated primitives due to autoboxing)
4505         static final char CHARACTER           = 'c';
4506         static final char CHARACTER_UPPER     = 'C';
4507 
4508         // java.util.Date, java.util.Calendar, long
4509         static final char DATE_TIME           = 't';
4510         static final char DATE_TIME_UPPER     = 'T';
4511 
4512         // if (arg.TYPE != boolean) return boolean
4513         // if (arg != null) return true; else return false;
4514         static final char BOOLEAN             = 'b';
4515         static final char BOOLEAN_UPPER       = 'B';
4516         // if (arg instanceof Formattable) arg.formatTo()
4517         // else arg.toString();
4518         static final char STRING              = 's';
4519         static final char STRING_UPPER        = 'S';
4520         // arg.hashCode()
4521         static final char HASHCODE            = 'h';
4522         static final char HASHCODE_UPPER      = 'H';
4523 
4524         static final char LINE_SEPARATOR      = 'n';
4525         static final char PERCENT_SIGN        = '%';
4526 
4527         static boolean isValid(char c) {
4528             return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4529                     || c == 't' || isCharacter(c));
4530         }
4531 
4532         // Returns true iff the Conversion is applicable to all objects.
4533         static boolean isGeneral(char c) {
4534             switch (c) {
4535             case BOOLEAN:
4536             case BOOLEAN_UPPER:
4537             case STRING:
4538             case STRING_UPPER:
4539             case HASHCODE:
4540             case HASHCODE_UPPER:
4541                 return true;
4542             default:
4543                 return false;
4544             }
4545         }
4546 
4547         // Returns true iff the Conversion is applicable to character.
4548         static boolean isCharacter(char c) {
4549             switch (c) {
4550             case CHARACTER:
4551             case CHARACTER_UPPER:
4552                 return true;
4553             default:
4554                 return false;
4555             }
4556         }
4557 
4558         // Returns true iff the Conversion is an integer type.
4559         static boolean isInteger(char c) {
4560             switch (c) {
4561             case DECIMAL_INTEGER:
4562             case OCTAL_INTEGER:
4563             case HEXADECIMAL_INTEGER:
4564             case HEXADECIMAL_INTEGER_UPPER:
4565                 return true;
4566             default:
4567                 return false;
4568             }
4569         }
4570 
4571         // Returns true iff the Conversion is a floating-point type.
4572         static boolean isFloat(char c) {
4573             switch (c) {
4574             case SCIENTIFIC:
4575             case SCIENTIFIC_UPPER:
4576             case GENERAL:
4577             case GENERAL_UPPER:
4578             case DECIMAL_FLOAT:
4579             case HEXADECIMAL_FLOAT:
4580             case HEXADECIMAL_FLOAT_UPPER:
4581                 return true;
4582             default:
4583                 return false;
4584             }
4585         }
4586 
4587         // Returns true iff the Conversion does not require an argument
4588         static boolean isText(char c) {
4589             switch (c) {
4590             case LINE_SEPARATOR:
4591             case PERCENT_SIGN:
4592                 return true;
4593             default:
4594                 return false;
4595             }
4596         }
4597     }
4598 
4599     private static class DateTime {
4600         static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4601         static final char HOUR_0        = 'I'; // (01 - 12)
4602         static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
4603         static final char HOUR          = 'l'; // (1 - 12) -- like I
4604         static final char MINUTE        = 'M'; // (00 - 59)
4605         static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
4606         static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
4607         static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4608         static final char AM_PM         = 'p'; // (am or pm)
4609         static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4610         static final char SECOND        = 'S'; // (00 - 60 - leap second)
4611         static final char TIME          = 'T'; // (24 hour hh:mm:ss)
4612         static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
4613         static final char ZONE          = 'Z'; // (symbol)
4614 
4615         // Date
4616         static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
4617         static final char NAME_OF_DAY           = 'A'; // 'A'
4618         static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
4619         static final char NAME_OF_MONTH         = 'B'; // 'B'
4620         static final char CENTURY               = 'C'; // (00 - 99)
4621         static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
4622         static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
4623 // *    static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
4624 // *    static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
4625         static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
4626         static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
4627         static final char MONTH                 = 'm'; // (01 - 12)
4628 // *    static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
4629 // *    static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (0 - 53) Sunday+
4630 // *    static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4631 // *    static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
4632 // *    static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
4633         static final char YEAR_2                = 'y'; // (00 - 99)
4634         static final char YEAR_4                = 'Y'; // (0000 - 9999)
4635 
4636         // Composites
4637         static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
4638         static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
4639 // *    static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
4640         static final char DATE_TIME             = 'c';
4641                                             // (Sat Nov 04 12:02:33 EST 1999)
4642         static final char DATE                  = 'D'; // (mm/dd/yy)
4643         static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
4644 // *    static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
4645 
4646         static boolean isValid(char c) {
4647             switch (c) {
4648             case HOUR_OF_DAY_0:
4649             case HOUR_0:
4650             case HOUR_OF_DAY:
4651             case HOUR:
4652             case MINUTE:
4653             case NANOSECOND:
4654             case MILLISECOND:
4655             case MILLISECOND_SINCE_EPOCH:
4656             case AM_PM:
4657             case SECONDS_SINCE_EPOCH:
4658             case SECOND:
4659             case TIME:
4660             case ZONE_NUMERIC:
4661             case ZONE:
4662 
4663             // Date
4664             case NAME_OF_DAY_ABBREV:
4665             case NAME_OF_DAY:
4666             case NAME_OF_MONTH_ABBREV:
4667             case NAME_OF_MONTH:
4668             case CENTURY:
4669             case DAY_OF_MONTH_0:
4670             case DAY_OF_MONTH:
4671 // *        case ISO_WEEK_OF_YEAR_2:
4672 // *        case ISO_WEEK_OF_YEAR_4:
4673             case NAME_OF_MONTH_ABBREV_X:
4674             case DAY_OF_YEAR:
4675             case MONTH:
4676 // *        case DAY_OF_WEEK_1:
4677 // *        case WEEK_OF_YEAR_SUNDAY:
4678 // *        case WEEK_OF_YEAR_MONDAY_01:
4679 // *        case DAY_OF_WEEK_0:
4680 // *        case WEEK_OF_YEAR_MONDAY:
4681             case YEAR_2:
4682             case YEAR_4:
4683 
4684             // Composites
4685             case TIME_12_HOUR:
4686             case TIME_24_HOUR:
4687 // *        case LOCALE_TIME:
4688             case DATE_TIME:
4689             case DATE:
4690             case ISO_STANDARD_DATE:
4691 // *        case LOCALE_DATE:
4692                 return true;
4693             default:
4694                 return false;
4695             }
4696         }
4697     }
4698 }